
Immersive Exploration of OSGi-based Software Systems
in Virtual Reality

Martin Misiak∗

TH Köln
Doreen Seider†

German Aerospace
Center (DLR)

Sascha Zur†
German Aerospace

Center (DLR)

Arnulph Fuhrmann∗

TH Köln
Andreas Schreiber†

German Aerospace
Center (DLR)

Figure 1: The software visualization application IslandViz for OSGi-based systems in virtual reality. (left) Software modules are
represented as islands. (middle) Islands have very distinct shapes. Dependencies between them are visualized with arced arrows.
(right top) Service connections are routed via nodes and distributed over the available height. (right bottom) All service and bundle
dependencies of a complex software system are shown simultaneously inside the bounds of a virtual table.

ABSTRACT

We present an approach for exploring OSGi-based software sys-
tems in virtual reality. We employ an island metaphor, which repre-
sents every module as a distinct island. The resulting island system
is displayed in the confines of a virtual table, where users can ex-
plore the software visualization on multiple levels of granularity by
performing intuitive navigational tasks. Our approach allows users
to get a first overview about the complexity of an OSGi-based soft-
ware system by interactively exploring its modules as well as the
dependencies between them.

Keywords: Software visualization, OSGi, real-world metaphor,
virtual reality.

1 INTRODUCTION

With increasing functionality, the complexity of a software sys-
tem grows and hinders its further development. Visualization tech-
niques can reduce the perceived complexity and aid the comprehen-
sion process. Over the years a number of two and three dimensional
visualization approaches have been proposed. However, the visual-
ization of software in virtual reality (VR) still remains a sparsely re-
searched field. Its main advantages are the reduction of navigational
difficulties encountered in classical 3D visualizations, stereoscopic
depth cues and more intuitive interaction possibilities.

We present an approach for visualizing OSGi-based software
systems in VR using an island metaphor. Our goal is to aid the high
level comprehension of such systems, while minimizing the expe-
rienced simulator sickness and enabling an intuitive navigation.

OSGi (Open Services Gateway Initiative), is a module-based,
service-oriented framework specification for Java. It centers on ap-
plication development using modular units, called bundles. A bun-

∗e-mail: first name.last name@th-koeln.de
†e-mail: first name.last name@dlr.de

dle is a self-contained unit of classes and packages, which can be
selectively made available to other bundles via import/export dec-
larations. Popular implementations are Apache Felix or Equinox.

2 RELATED WORK

In recent years, the software visualization field has made exten-
sive use of real-world metaphors. Among the most frequently used
is the city metaphor, which was influenced by the work of Wet-
tel et al. [10]. Although we use a different metaphor, we share its
building-based class representation. Kuhn et al. [2] cluster software
artifacts, based on lexical similarity, to create 2D cartographic soft-
ware maps. While the cartographic metaphor is similar to ours, we
create distinct islands, based on hierarchical information.

Fittkau et al. [1] proposed an approach for a live trace visualiza-
tion using a city metaphor. The visualization is displayed inside the
Oculus Rift DK1, while the interaction is gesture based and uses a
gaze driven pointer. Schreiber et al. [5] proposed an approach for
visualizing software modules in VR, using an electrical component
metaphor. Modules are represented as blocks and the containing
packages are stacked on top of each module. Merino et al. [3] and
Vincur et al. [8] presented a VR visualization for object oriented
software using a city metaphor. The approaches rely on physical
movement as their main navigational mechanism. In contrast, our
work uses an explicit transformation of the visualization itself and
is therefore independent of the available tracking space.

3 ISLANDS

The visualization metaphor has to be expressive enough to provide
mappings for a number of software artifacts. As pointed out by
Wettel et al. [10], classes are the cornerstones of the object-oriented
paradigm and are therefore the finest granular artifacts we aim to
visualize. In the case of OSGi-based software, the metaphor needs
to account for the following artifacts: class types, packages, bun-
dles, service components, and service interfaces. We are interested
in the import and export relations of individual bundles, as well as
the referencing and providing relationships between service com-
ponents and their respective interfaces. The metaphor should also



emphasize the bundle layer, as it forms a central aspect of OSGi.
We propose an island metaphor for the visualization of OSGi-

based software systems. The entire software system is represented
as an ocean with many islands on it. Each island represents an OSGi
bundle and is split into multiple regions. Each region represents a
Java package and contains multiple buildings. The buildings are the
representatives of the individual class types which reside inside of
a package. Each region provides enough space to accommodate all
of its buildings without overlapping, and hence the overall size of
an island is proportional to the number of class types inside of a
bundle. In order to emphasize the plausibility of the metaphor, our
islands strive for a high resemblance with real-world islands.

The island construction is based on claiming cells in a Voronoi
diagram and is analogous to the work of Yang et al. [11]. Due to
the probabilistic nature of this algorithm, the islands acquire a very
distinct and rugged shape, which allows for a better memorability
and thus, reduces the dependency on name labels. To maximize
the visibility of class types, a multi-storey building representation
is chosen, encouraging a metric based expansion in the height di-
mension. Our prototype uses the Lines of Code metric, where for
every n lines of code, a storey is added to the building.

3.1 Visualization of Dependencies
Due to motion parallax and stereoscopic depth cues, VR strength-
ens the comprehension of relational information [9]. This makes it
particularly well suited for visualizing dependencies.

3.1.1 Bundle Dependencies
Building on the island metaphor we use ports, situated along the
coast line, which manage the incoming and outgoing dependencies.
In order to avoid island intersection, the dependencies are visual-
ized as vertically arced arrows. A color gradient, together with the
arrow head indicate the dependency direction. The width is mapped
to the number of packages which are being imported or exported
over the given connection.

3.1.2 Service Dependencies
The main entities of the OSGi service layer are service interfaces
and service components. As these components are linked to Java
class types, we visualize them as special building types. A ser-
vice component can reference as well as provide for multiple ser-
vice interfaces. We represent these relationships with a straight
line connection. However to avoid intersections and to leverage the
vacant height dimension, we reroute the connections through spe-
cial nodes, which are distributed evenly across the available height.
They are located directly above the buildings in question and indi-
cate what type of relationship is present.

4 INTEGRATION INTO A VR ENVIRONMENT

The entire software visualization is displayed in the confines of a
virtual table. Although this imposes a restriction on the size of the
usable visualization space, it offers several advantages. When in-
specting the software, the user does not experience any relocation,
since only the visualization in the confinements of the table has to
be changed without altering the virtual room around it. This reduces
user disorientation and simulator sickness, as the room always pro-
vides a stable frame of reference [4]. Additionally, the user does
not have to move around excessively in the virtual environment to
view a desired information. This allows for a standing as well as a
seated VR experience.

In order to inspect arbitrary large software inside of the table, the
user can manipulate the visualization itself. Our manipulation tech-
nique encompasses translation, rotation and scaling and is very sim-
ilar to the Two-Handed Interface technique described by Schultheis
et al. [6]. In contrast to their work we constrain the rotation to the
up axis. The scaling operation is especially important, as zooming

is directly tied to the transition between the individual abstraction
layers (island, region, building) of the software system. This mode
of interaction basically follows a level of detail scheme, where the
elements belonging to a specific layer can be interacted with, as
soon as they are large enough for the user to see and select.

5 IMPLEMENTATION

Our software prototype, IslandViz, was developed using Unity3D.
Prior to island construction, a tool based on the work of Seider et
al. [7], is used to extract all relevant information from the source
code of the software. We tested our implementation on a desk-
top system with the following specifications: Intel Xeon E5-2650,
2.6GHz, 64GB Ram, NVIDIA Geforce 1080, HTC Vive. To val-
idate the approach, a subset of the OSGi-based software project
RCE (http://rcenvironment.de/) was visualized. It consists of 1700
classes, distributed over 500 packages in 160 bundles, along with
550 service and 1200 package dependencies. At all times, the
achieved frame rate was well above 90Hz.

6 CONCLUSION AND FUTURE WORK

We presented our approach for exploring OSGi-based software sys-
tems in virtual reality. We used an island metaphor to emphasize the
modular aspects of OSGi and implemented an interaction technique
to preserve user comfort, while inspecting large software systems.
In future work, we would like to determine the practicability of this
approach in aiding software comprehension tasks. Additionally, it
would be very interesting to explore our visualization in AR.

REFERENCES

[1] F. Fittkau, A. Krause, and W. Hasselbring. Exploring software cities
in virtual reality. In 2015 IEEE 3rd Working Conference on Software
Visualization (VISSOFT), pages 130–134, Sept 2015.

[2] A. Kuhn, P. Loretan, and O. Nierstrasz. Consistent layout for the-
matic software maps. In Reverse Engineering, 2008. WCRE’08. 15th
Working Conference on, pages 209–218. IEEE, 2008.

[3] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz. CityVR: Game-
ful software visualization. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 633–637. IEEE,
2017.

[4] J. Prothero, M. H Draper, T. Furness, D. Parker, and M. J Wells. The
use of an independent visual background to reduce simulator side-
effects. Aviation, space, and environmental medicine, 70:277–283,
Apr. 1999.

[5] A. Schreiber and M. Brüggemann. Interactive visualization of soft-
ware components with virtual reality headsets. In 2017 IEEE Working
Conference on Software Visualization (VISSOFT).

[6] U. Schultheis, J. Jerald, F. Toledo, A. Yoganandan, and P. Mlyniec.
Comparison of a two-handed interface to a wand interface and a mouse
interface for fundamental 3d tasks. In 2012 IEEE Symposium on 3D
User Interfaces (3DUI), pages 117–124, March 2012.

[7] D. Seider, A. Schreiber, T. Marquardt, and M. Brüggemann. Visualiz-
ing modules and dependencies of osgi-based applications. In Software
Visualization (VISSOFT), 2016 IEEE Working Conference on, pages
96–100. IEEE, 2016.

[8] J. Vincur, P. Navrat, and I. Polášek. Vr city: Software analysis in vir-
tual reality environment. In Software Quality, Reliability and Security
Companion (QRS-C), 2017 IEEE International Conference on, pages
509–516. IEEE, 2017.

[9] C. Ware and G. Franck. Evaluating stereo and motion cues for vi-
sualizing information nets in three dimensions. ACM Trans. Graph.,
15(2):121–140, Apr. 1996.

[10] R. Wettel and M. Lanza. Visualizing software systems as cities. In
2007 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pages 92–99, June 2007.

[11] M. Yang and R. P. Biuk-Aghai. Enhanced hexagon-tiling algorithm for
map-like information visualisation. In Proceedings of the 8th Interna-
tional Symposium on Visual Information Communication and Interac-
tion, VINCI ’15, pages 137–142, New York, NY, USA, 2015. ACM.


	Introduction
	Related Work
	Islands
	Visualization of Dependencies
	Bundle Dependencies
	Service Dependencies


	Integration into a VR Environment
	Implementation
	Conclusion and Future Work

