
© 2020 IEEE. This is the author’s version of the article that will be published in the proceedings of 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR).

Accelerated Stereo Rendering with Hybrid Reprojection-Based
Rasterization and Adaptive Ray-Tracing

Niko Wißmann *†

TH Köln, Computer Graphics Group
Martin Mišiak *‡

TH Köln, Computer Graphics Group
University Würzburg, HCI Group

Arnulph Fuhrmann§

TH Köln, Computer Graphics Group

Marc Erich Latoschik¶

University Würzburg, HCI Group

Figure 1: The proposed hybrid rendering system reprojects the source image of the left viewpoint into the right viewpoint by using an
adaptive 3D grid warping approach (left), detects disoccluded regions (middle, marked in green) and resolves them correctly through
adaptive real-time ray-tracing (right).

ABSTRACT

Stereoscopic rendering is a prominent feature of virtual reality ap-
plications to generate depth cues and to provide depth perception
in the virtual world. However, straight-forward stereo rendering
methods usually are expensive since they render the scene from
two eye-points which in general doubles the frame times. This is
particularly problematic since virtual reality sets high requirements
for real-time capabilities and image resolution. Hence, this paper
presents a hybrid rendering system that combines classic rasteriza-
tion and real-time ray-tracing to accelerate stereoscopic rendering.
The system reprojects the pre-rendered left half of the stereo image
pair into the right perspective using a forward grid warping technique
and identifies resulting reprojection errors, which are then efficiently
resolved by adaptive real-time ray-tracing. A final analysis shows
that the system achieves a significant performance gain, has a neg-
ligible quality impact, and is suitable even for higher rendering
resolutions.

Index Terms: Computing methodologies—Computer Graphics—
Rendering—Ray tracing; Computing methodologies—Computer
Graphics—Rendering—Rasterization; Computing methodologies—
Computer Graphics—Graphics systems and interfaces—Virtual re-
ality

*Authors contributed equally to this work.
†e-mail: niko.wissmann@gmail.com
‡e-mail: martin.misiak@th-koeln.de
§e-mail: arnulph.fuhrmann@th-koeln.de
¶e-mail: marc.latoschik@uni-wuerzburg.de

1 INTRODUCTION

As recent years have shown, the Virtual Reality (VR) community
continues to grow steadily. More and more hardware manufacturers
are launching new head-mounted displays (HMDs) on the market.
This includes mobile systems such as the Oculus Go or the more ad-
vanced Oculus Quest. But also classic desktop systems like the HTC
Vive Pro will remain on the market. Nevertheless, all systems have
one characteristic in common - they require stereoscopic rendering
with a high spatial and temporal resolution. Despite continuous
improvements in the underlying GPU hardware, the increasing ren-
dering requirements continue to pose a challenge for the latest VR
devices. Not only increasing resolutions and refresh rates but also
increasing demands on visualization fidelity can have a considerable
impact on the rendering performance. A high degree of immersion
is essential for every VR application. A low frame rate or a high
system latency can have a negative impact on it and can lead to a
reduced sense of presence [29], or even cause motion sickness. That
is why the underlying rendering of a VR application has to meet the
given requirements.

Optimization methods for stereoscopic rendering, frequently used
in popular game engines, often target only at the CPU-side applica-
tion loop or improve geometry processing to a certain extent. For
example, single-pass stereo rendering using geometry duplication
in a geometry shader or using instanced API drawcalls. But these
optimization options do not reduce the workload in the fragment
shaders. Still, all pixels of both output frames of the stereo image
pair have to be shaded entirely in the fragment shaders.

This paper presents a rendering system that accelerates the ren-
dering process of one image of the stereo pair using spatial reprojec-
tion. The reprojection technique is integrated into a classic deferred
rendering pipeline, which generates the left reference image via
regular rasterization and fragment shading. This is followed by a
forward reprojection step using an adaptive 3D grid warping ap-

1

© 2020 IEEE. This is the author’s version of the article that will be published in the proceedings of 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR).

Shadow
Pass

Left
Output

Right
Output

Shadow Map

Deferred Rendering
Pass

G-Buffer

Lighting

Tone
Mapping

Pass

Tone
Mapping

Pass

Reprojection Pass

Compute Subdivision
Heuristic

Hardware
Tessellation

Grid Reprojection

Disocclusion
Detection

Hole-Filling
Pass

Primary Ray
Generation

Ray Traversal
& Intersection

Hit Shading

Figure 2: Overview of the hybrid rendering system, consisting of
a standard deferred rasterization pass for the left viewpoint and a
subsequent reprojection pass with ray-traced hole-filling for the right
viewpoint.

proach [16, 34] to reproject the pixel information of the left image
into the right viewpoint. Reprojection errors and appearing visual
artifacts are correctly solved via an adaptive real-time ray-tracing
hole-filling technique. To this end, the DirectX Raytracing (DXR)
API is used to perform hardware-accelerated ray-tracing on sup-
ported hardware, and hence eliminating the typical bottleneck that
arises from performing compute-intensive ray-tracing operations in
parallel to rasterization. The resulting image (cf. Fig. 1) correctly
captures disocclusions and is very close to a reference rendering.

In our paper we make the following contributions:

• A hybrid reprojection system that combines rasterized ren-
dering with adaptive ray-tracing to accelerate stereoscopic
rendering

• A perceptually motivated heuristic for an adaptive grid subdi-
vision used during the 3D grid warping stage

• A comprehensive performance analysis of said system, includ-
ing a comparison between hardware-accelerated ray-tracing
and rasterization for the shading of disoccluded regions

2 RELATED WORK

Increasing display resolutions and higher frame rates do not neces-
sarily imply an equal increase in the required computational effort to
render a frame. Reprojection algorithms leverage existing spatial and
temporal coherences within a scene to reuse previously computed
values. A large body of work exists for these algorithms extending
over various different fields such as view interpolations of video
footage, acceleration of preview image rendering for offline render-
ers, up to performance optimization for real-time rendering. Moti-
vated by our use case of stereoscopic rendering, we focus primarily
on reviewing reprojection algorithms aimed at real-time rendering.

2.1 Reprojection
Graphics rendering was accelerated via reprojection very early [1–
3, 19]. Reprojection could shorten the computation times of first
ray-tracing-based renderings of stereoscopic images by exploiting
the coherence between the two perspectives. The first usage of
reprojection for a head-tracked stereoscopic display is given by
McMillan et al. [28].

Many approaches rely on forward reprojection, where each pixel
of the input image is mapped to one pixel in the output image [39].
Since the mapping is surjective, a direct reprojection does not assign
a value to all pixels of the output image, resulting in visible holes.
This fact can be mitigated by using point splatting [33, 38], or by
interpreting the input image as a connected mesh [26] whose vertices

mirror the depth values of the pixels. Such a warping grid can then
be transformed via a vertex shader into another perspective [15],
where rasterization and shading take place. This approach does not
suffer from the aforementioned pixel holes. Instead, foreground and
background objects are connected by so-called “rubber-sheets”.

A native resolution warping grid (one-to-one mapping between
vertex and pixel) is not necessary, as adjacent pixels with similar
attributes can be warped together as bigger patches into the target
perspective [12]. Didyk et al. [16] subdivide only grid cells, which
cover pixels of a higher depth disparity. Using this adaptive sub-
division approach results in less grid triangles and hence in better
warping performance without compromising quality. Schollmeyer et
al. [34] subdivide the warping grid based on a colinearity measure,
which prevents over-tessellation of slanted surfaces and reduces the
number of grid triangles even further. In addition the authors also
handle the reprojection of transparent geometry via ray-casting into
an A-Buffer.

A reprojection can also be done in backward order, where each
pixel in the target image searches for corresponding pixels in one
or more source images. Nehab et al. [30] presented the reverse
reprojection cache, which allowed fragments to reuse shading results
from previous frames. This is achieved by explicitly storing and
transforming vertex attributes for multiple frames. Another approach
is proposed by Bowles et al. [11], which extends the work of Yang et
al. [41] on fixed point iteration to search for a given pixels location in
the previous frame. The advantage of the method is that no additional
vertex attribute is needed for the position in the previous frame, and
also a second transform of the vertex into the previous position is not
required. A more recent usage of fixed point iteration is proposed
by Lee et al. [24], but only in the context of depth buffer warping to
accelerate, e.g., occlusion culling, and not for the rendering of color
images.

2.2 Hole-Filling

The common problem of all mentioned reprojection methods is that
they cannot render a perfect image for a new camera perspective.
If previously hidden geometry becomes visible in the new perspec-
tive, disocclusions occur, as no color information is available in
the source image. These pixel regions cannot be filled properly by
reprojection alone, and erroneous pixels, also called holes, remain in
the image. A large body of work has been done in the field of digital
image and video post-processing on hole-filling, or inpainting, tech-
niques [10, 14, 40, 42]. However due to performance considerations,
these are rarely used in a real-time context. Instead authors rely on
simpler techniques, as they are required to execute in a fraction of
the available frame-time budget.

The correct, but also the most expensive solution is to rerender
the missing information. While the shading calculations can be
restricted only to specific pixels [30], in raster-based rendering the
entire captured scene geometry has to be processed nonetheless,
introducing a significant overhead. Didyk et al. [16] use a simple
inpainting strategy, which selects random neighbouring pixels to
cover up resulting holes. While very efficient, this method is not
suitable for prominent disoccluded regions. Bowles et al. [11] clone
the pixel values of the background texture surrounding the disoc-
cluded region. Schollmeyer et al. [34] employ a hole-filling solution
using low-pass filtered intermediate result images. After the im-
age warping process, the output image is subject to a multi-stage
low-pass filtering process, where only non-hole pixels, or pixels
that have a greater depth than the previously calculated average are
considered. This approach works well for small disocclusions or to
cover up largely homogeneous regions. However for more detailed
background textures, the inpainting becomes obvious.

2

© 2020 IEEE. This is the author’s version of the article that will be published in the proceedings of 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR).

zmax

zmin

ip
d

Grid Cell

Figure 3: Grid subdivision heuristic using binocular parallax. Based
on the depth values inside of a grid cell, the maximum and minimum
binocular parallax angles, θmax and θmin, are determined. If their differ-
ence is above a certain threshold, the cell needs to be subdivided.

2.3 Ray-Tracing

Adaptive ray-tracing has also been used very early as a hole-filling
technique. For example, Adelson et al. [4] employ it to acceler-
ate the generation of fully ray-traced animation frames. Previously
rendered frames are reprojected into the current view perspective
and validated for resulting errors which are marked for the subse-
quent adaptive ray-tracing hole-filling pass. Only a small number of
pixels have to be reshaded from scratch with newly traced primary
rays. Unlike the previously mentioned inpainting and filtering strate-
gies, this technique leads to exact ray-traced animation frames with
reported time savings of up to 92 %, compared to a full rendering.
Further usage can be found in a voxel-based terrain rendering system
for a flight simulator [32] and for stereoscopic voxel-based terrain
rendering [36]. It has also been used in the context of foveated
rendering to create a higher sampling density in the user’s central
vision and to correct reprojection errors [37]. However, it is only
usable in certain scenes designed for ray-tracing, as pointed out by
Friston et al. [20].

Since the introduction of hardware accelerated ray-tracing on
consumer graphics cards, this new feature was primarily used in
hybrid rendering systems for improving the fidelity of rendering
effects like reflections, global illumination (GI) and shadows for
a wide range of 3D scenes [21]. The work of Barré-Brisebois et
al. [8] should be mentioned here on the hybrid rendering pipeline
for the PICA PICA experimental showcase. It combines standard
rasterization with ray-traced visual features in real-time. Another
usage can be found in the work of Majercik et al. [25] for efficient
GI rendering by extending irridiance probes. It is also used in the
field of anti-aliasing (AA) as shown by Marrs et al. [27] to improve
Temporal AA [23].

In contrast, our work leverages hardware accelerated ray-tracing
to improve the rendering performance of stereoscopic applications.
We build upon the work of both Didyk et al. [16] and Schollmeyer
et al. [34] who also target stereoscopic rendering using a grid based
reprojection approach. However, our approach differs in a few im-
portant ways. Our grid subdivision is done in a single pass using
the hardware tessallator, instead of a multi-pass geometry shader
approach. We employ a perceptually motivated heuristic to subdi-
vide our grid cells, which is not based on absolute measures. And
lastly, we do not perform any inpainting to hide disocclusion arti-
facts. Instead, we use adaptive raytracing to correctly reconstruct
the missing information.

3 HYBRID STEREO RENDERING

The reprojection system proposed in this paper consists of two
main components - a reprojection pass, and a hole-filling pass. An
overview of the system is shown in Fig. 2. For our integration, we

use a standard deferred rendering pipeline, which is divided into
a G-buffer pass and a lighting pass. The left image of the stereo
pair is generated as usual by the deferred pass. Shadow mapping is
integrated by generating a simple shadow map for the primary light
source of the scene and forwarding it to the lighting pass. The output
frame of the lighting pass is directly submitted to the left portion of
the output display, but also passed on, including the depth buffer of
the left image, to the following reprojection pass.

The reprojection pass performs a forward 3D grid warping and
reprojects the left source image into the right viewpoint. Any re-
sulting reprojection errors (holes) are detected and filled via the
subsequent hole-filling pass using adaptive real-time ray-tracing.
The ray-tracing pass executes the same shading code (including
shadow factor calculation) in the ray-trace hit shaders as the frag-
ment shader of the lighting pass. Thus, the holes are filled with
correctly shaded color information, and the resulting image is then
submitted to the right portion of the display.

It is important to note that our reprojection system does not de-
pend on any specific rendering pipeline. It requires only the depth
and radiance values of a rendered viewport, and can therefore be
integrated into a large variety of rendering setups. Also the reprojec-
tion direction is arbitrary and not limited to any specific direction.
However for the sake of simplicity, we will assume a left-to-right
reprojection in our explanation.

3.1 3D Grid Warping
The warping grid is initialized at the system’s start in NDC coor-
dinates with a cell size of 16× 16 pixels and bound to the GPU.
As already pointed out by Didyk et al. [16], 3D warping does not
require a native grid resolution. However, a 16× 16 cell is not suffi-
cient enough to warp geometry surfaces distortion-free at borders
of foreground and background objects. For this reason, a dynamic
hardware tessellation is used to adapt the grid cell size to the un-
derlying source image. The tessellation is done via the hardware
tessellator stage introduced in DirectX 11, which can be controlled
by specific hull and domain shaders. In order to decide dynamically
whether a grid cell should be tessellated or not, a compute shader
is executed before the actual reprojection takes place. In it, a fast
parallel reduction is performed on the depth buffer of the source
image to obtain min/max depth values residing inside a grid cell.
Based on them, we compute our subdivision heuristic and pass it
to the next stage. In the hull shader, a threshold condition is used
to decide whether the given grid cell should be tessellated with the
factor of 16 (native resolution equivalent) or left unchanged.

A common source of visual artifacts when using adaptive tessel-
lation are T-junctions. They arise when neighbouring patches use
different tessellation factors [31], and can introduce visible cracks
into a displaced mesh. In order to prevent these artifacts from hap-
pening, we additionally tessellate all grid cells in a 4-neighborhood
around the cell in question. While this increases the amount of
generated grid triangles, it also prohibits the creation of T-junctions
in the direct vicinity of displaced vertices.

The actual reprojection then takes place in the domain shader.
Here, all default vertices and new vertices created by the tesella-
tor are transformed into the target viewpoint with a pre-computed
reprojection matrix and the depth value of each vertex position in
the source image. The reprojection matrix consists of the inverse
view-projection matrix of the left camera and the view-projection
matrix of the right camera. The grid is then rasterized and shaded
via a bilinear texture lookup into the source image.

3.2 Subdivision Heuristic
In order to determine if a grid cell of 16× 16 pixels needs to be
further subdivided, we employ a perceptually motivated heuristic
based on binocular parallax (cf. Fig. 3). Binocular parallax is the
angle θ between the lines of sight of both eyes, separated by an

3

© 2020 IEEE. This is the author’s version of the article that will be published in the proceedings of 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR).

A

B

BA

Figure 4: Wireframe rendering of the tessellated warping grid (coarsely subdivided for illustrative purposes). Only grid cells whose depth values
exceed a certain binocular parallax difference are further subdivided. This allows for an adaptive subdivision based on the distance to the viewer
(see the subdivision on the door for exemplary viewer positions A and B).

interpupillary distance ipd, when converged on a point at distance z.

θ(z) = 2tan−1
(

ipd
2z

)
(1)

When comparing two points at a depth discontinuity, two distinct
binocular parallax angles will be present. The difference between
these angles θ∆, is what determines if an observer can differentiate
between the two depth values (based on stereoscopic vision alone).
The discrimination threshold is referred to as stereo acuity, and is
on average between 0.5 and 1 minutes of arc [13].

In order to provide a conservative estimate for our grid subdivi-
sion, we search for the minimum (zmin) and maximum (zmax) depth
value inside of a given cell. It should be noted, that when working
with binocular parallax, depth values have to be linearized first. A
difference θ∆ between the associated binocular parallax angles is
computed

θ∆(zmin,zmax) = θ(zmin)−θ(zmax) (2)

and compared against a threshold value. Values under the threshold
are indicative of indistinguishable depth differences, for which a
subdivision would be redundant. For values over the threshold, on
the other hand, a subdivision becomes necessary. In contrast to
subdivision approaches based on absolute depth [16] or colinearity
differences [34], our heuristic interprets depth disparities in relation
to the distance at which they occur (cf. Fig. 4).

3.3 Disocclusion Detection
The result of the grid warping stage can be seen in Fig. 6 (a). Re-
sulting “rubber-sheets” can cover disoccluded regions, as well as
occlude regions, where correct information is available in the source
image.

We discard these regions and flag them (i.e. green regions in
the middle of Fig. 1) for a subsequent hole-filling process. To this
end, a Sobel operator is used in the domain shader, to filter the
input depth buffer at a given vertex position. The resulting per-
vertex depth gradient is passed on to the fragment shader, where a
threshold condition decides if a fragment should be discarded. We
also tested if afflicted grid triangles could be directly discarded via a
geometry shader, to avoid unnecessary rasterization. However the
presence of the geometry shader became a significant bottleneck in
our pipeline, and therefore we resorted to the fragment discarding
described above.

3.4 Hole-Filling
Within the warping process, the texture target of the frame buffer
object (FBO) is cleared as usual for each new frame. This also sets

the value of the alpha channel to 0. If a fragment in the fragment
shader is successfully shaded via the texture lookup, the alpha value
becomes non-zero. When discarding a fragment, on the other hand,
the alpha value remains unchanged. Based on this alpha value, the
ray generation shader of the hole-filling pass can decide whether a
ray for a certain pixel should be generated and traced or not.

The hole-filling process needs three different shaders that are
predefined by the DXR API. A ray generation shader as the initial
entry point to start the ray-tracing. A closest hit shader used for the
actual hit point shading and a miss shader, in case no geometry is
hit. There was no need for any custom intersection shader, so the
standard DXR ray-triangle intersection shader is used together with
the provided standard acceleration structure for the ray traversal and
intersection stage. If the intersection shader reports a successful
triangle hit, the same shading code as in the fragment shader of the
lighting pass will be executed. The only difference is the calculation
of the used texture MIP-level.

Unlike rasterization, where pixels are shaded within a 2× 2 pixel
block and four differentials can be generated to compute an appro-
priate texture MIP-level, this cannot be done by a single ray. One
solution is to use cone tracing [6]. Using the projected footprint of
the cone, the texture MIP-level can also be calculated for a single
hit point of a ray. A practical implementation of this technique is
described by Akenine-Möller et al. [5]. The texture MIP-level λ is
therefore determined by

λ = ∆0 +0.5log2

(
α‖dhit‖

1
|n̂ · d̂hit |

)
, (3)

where α is the spread angle, derived from the vertical field of view
and the height of the viewport, dhit the vector from the camera center
to the hit point, and n is the normal at the hit point. If the distance
increases, the footprint size also increases. If the angle between n
and dhit increases, i.e., a surface is viewed at an oblique angle, the
footprint also increases. Together with the base texture MIP-level
∆0, which according to Ewins et al. [18] can be approximated by

∆0 = 0.5log2

(
ta
pa

)
, (4)

using the double texel-space area ta and the double triangle area
pa, the correct texture MIP-level can be calculated for each ray hit.
This approach allows for a comparable MIP-level selection as with
rasterization (cf. Fig. 5).

When using our hole-filling approach, even large disoccluded
regions containing previously hidden information, are correctly re-
constructed (cf. Fig. 6).

4

© 2020 IEEE. This is the author’s version of the article that will be published in the proceedings of 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR).

(a) (b) Texture MIP-levels as com-
puted by standard rasterization.

(c) Texture MIP-levels as com-
puted by a cone-tracing approxi-
mation.

Figure 5: A visualization of texture MIP-levels (a) used by our rasteri-
zation (b) and ray-tracing (c) stages.

3.5 Rasterization-based Hole-Filling
In addition to our hybrid reprojection approach, we wanted to com-
pare the hole-filling performance of dedicated ray-tracing hardware
against the GPUs rasterizer. We implemented therefore a second
reprojection method. It performs the same base reprojection as the
hybrid ray-tracing system, but remaining holes are not filled in by
ray-tracing, but via rasterization and subsequent fragment shading
(G-buffer and lighting pass). To keep the shading costs minimal, a
stencil mask is used which covers only previously discarded pixels.

4 PERFORMANCE ANALYSIS

For our implementation, the open-source real-time research frame-
work Falcor [9] (version 3.2.1) was used. Falcor supports the Di-
rectX 12 API together with the DXR API extension for real-time
ray-tracing. All shaders were implemented using Falcor’s integrated
shading language Slang [22], a language extension for DirectX
HLSL shaders. The performance measurements have been done in
the four test scenes shown in Fig. 7 with the corresponding proper-
ties listed in Table 1. For our subdivision heuristic, we chose a θ∆ of
1 minute of arc. In each test run, 1000 frames were captured during
a fixed camera movement defined by a static camera path through
the scenes. All tests were performed on a workstation with a 3.5
GHz AMD Ryzen Threadripper 1920X 12-Core processor with 16
GB RAM and a single NVIDIA GeForce RTX 2080 Ti with 8 GB
video memory. All time measurements were done for HD (1920
× 1080) and 4K (3840× 2160) per eye rendering resolutions.

4.1 Test Setup
Three rendering systems have been compared within our perfor-
mance analysis. The naive stereo rendering implementation, using
two full render passes, serves as a reference system and is referred
to as Plain Stereo. The presented reprojection system with hybrid
rasterization and adaptive real-time ray-tracing is called Repro RT,
while the same system but with rasterization-based hole-filling is
called Repro ReRaster. All three systems use CPU side frustum
culling and GPU side backface culling.

4.2 Results
The measured frame times for all test scenes and resolutions are
shown in Fig. 8. In all instances, the hybrid rendering system Repro
RT achieves the best performance. Especially the result charts for 4K
resolution show large differences to the Plain Stereo renderer. The
Repro ReRaster system is also consistently faster than Plain Stereo,
however only at 4K resolution. For HD, it struggles in some scenes
to keep up with Plain Stereo, providing no speed up at all. The
strong differences in the Repro ReRaster results for HD resolution
can be attributed to the single-thread performance of our test system.

(a) (b)

Figure 6: Results of our reprojection algorithm. (a) Performing only
the grid warping step results in ”rubber-sheet” artifacts in areas not
visible from the reprojecting viewpoint. (b) These areas are efficiently
and correctly resolved via adaptive ray-tracing.

Repro Reraster has the overhead of issuing all drawcalls twice, in
addition to rendering the warping grid. Here, the ray dispatch call of
the ray trace system has a clear advantage.

This behavior can also be confirmed by looking at the achieved
speed-up factors, which are listed in Table 2. Repro RT achieves the
best speedup factors in all test cases. The numbers also clearly show
that the achieved speed-ups for both reprojection systems increase
with output resolution. This can be explained by the fact, that a
higher percentage of screen pixels can be successfully reprojected
than it would be the case for a lower resolutions. When put in per-
spective of constantly increasing display resolutions on new devices,
reprojection algorithms will continue to play an important role in
the future.

Furthermore, Fig. 9 (left and middle column) shows the GPU
times of the individual render stages (exemplary for the Bistro Inte-
rior scene), without any CPU overhead. It can be seen that the depth
buffer compute stage for the grid tessellation factor (Comp. tess.)
contributes only to a very small part of the system’s rendering time.
The average time for HD is 0.05 ms and for 4K 0.18 ms. It is also
noticeable that the grid warping performance is very similar over
the whole measured range, although the grid is continuously ren-
dered with a varying number of triangles depending on the camera’s
position and angle. On average, the grid tessellation and rendering
time in all scenes for HD resolution is between 0.2 ms and 0.25 ms.
For 4K, it is between 0.73 ms and 0.82 ms. The charts also show
that even without the CPU overhead of issuing additional draw calls,
Repro ReRaster’s hole-filling performance is worse when compared
to Repro RT.

4.3 Discussion and Limitations
The results show very well that the hybrid rendering system is much
faster than the naive reference stereo renderer. On average, the right
image is synthesized for HD below 1 ms and for 4K within a maxi-
mum of 2 ms. Also, the Repro RT hole-filling technique performs
better than Repro ReRaster, especially for higher resolutions. This
emphasizes the advantages of individual per-pixel primary rays for
the reshading of small screen portions, as opposed to full-screen
rasterization.

As can be seen in the right column of Fig. 9, the performance of
Repro RT depends mostly on the number of ray-traced pixels. There-
fore, in a scenario with massive disocclusions, ray-tracing could lose
its advantage over rasterization. However such a scenario is unlikely
to be encountered, as our test scenes demonstrate. We explicitly
chose the Bistro Interior scene due to its high depth complexity and
disocclusion potential. The percentage of ray-traced pixels was on
average 6 % with a maximum of 11.5 %.

The tested scenes contained only static geometry, which allowed

5

© 2020 IEEE. This is the author’s version of the article that will be published in the proceedings of 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR).

(a) Bistro Interior (b) Bistro Exterior (c) Bistro Night (d) Temple

Figure 7: These figures show the used test scenes. Three test scenes were created out of the Amazon Lumberyard Bistro asset [7] and one
scene out of the UE4 Sun Temple asset [17].

Table 1: Test scene properties.

Scene Triangles Textures Texture size Lights
Bistro In. 1,022,521 211 1 × 1 to 2048 × 2048 1 directional and 13 point
Bistro Ex. 2,832,120 405 1 × 1 to 2048 × 2048 1 directional
Bistro Night 3,845,871 607 1 × 1 to 2048 × 2048 1 directional and 31 point
Temple 606,376 148 512 × 512 to 2048 × 2048 1 directional and 13 point

Table 2: Total frame time in ms for each rendering system, measured
over 1000 frames. The speedup factors are in comparison to the Plain
Stereo renderer.

Reso-
lution Scene Renderer Total

time [ms]
Speedup

factor

HD

Bistro In.
Plain Stereo 3,074
Repro ReRaster 2,778 1.11
Repro RT 2,404 1.28

Bistro Ex.
Plain Stereo 5,485
Repro ReRaster 5,878 0.93
Repro RT 3,779 1.45

Bistro
Night

Plain Stereo 7,602
Repro ReRaster 7,989 0.95
Repro RT 5,250 1.45

Temple
Plain Stereo 3,747
Repro ReRaster 2,912 1.29
Repro RT 2,545 1.47

4K

Bistro In.
Plain Stereo 11,673
Repro ReRaster 8,700 1.34
Repro RT 8,297 1.41

Bistro Ex.
Plain Stereo 12,901
Repro ReRaster 9,719 1.33
Repro RT 8,638 1.49

Bistro
Night

Plain Stereo 18,989
Repro ReRaster 13,771 1.38
Repro RT 12,215 1.55

Temple
Plain Stereo 14,598
Repro ReRaster 10,392 1.40
Repro RT 9,409 1.55

us to build the acceleration structure in a way to maximize ray
traversal performance. However, dynamic scenes are also possible
with DXR since the acceleration structure can be updated without a
complete rebuild from scratch. This can have, of course, a negative
impact on the overall performance of the system. Therefore, the use
of our reprojection technique on animated scenes should be further
evaluated. Due to the single-pass grid subdivision approach, our
warping grid consists of more triangles than a comparable multi-
pass approach [16, 34]. For our tested resolutions of HD and 4K,
we did not notice this to be any bottleneck in our algorithm, as the
increased rendering costs are compensated by the low overhead of

the hardware tessellation stage.
As a limitation, it has to be stated that our reprojection sys-

tem does currently not support warping and hole-filling of semi-
transparent geometry. In addition, the reprojection does not produce
correct specular reflections as we reproject pixel values under the
assumption of a Lambertian surface. To a certain extent, this leads
to a reduction in highlight disparity for very sharp or close reflec-
tions [35].

5 CONCLUSION AND FUTURE WORK

This paper describes a hybrid reprojection-based rasterization ren-
dering system with adaptive ray-tracing for accelerating stereoscopic
rendering. The speed up is achieved by reprojecting the first half
of the stereo image pair into the second view using a warped 3D
grid mesh. A binocular parallax heuristic is used to adaptively re-
fine the grid mesh via hardware tessellation to avoid distortions
during the warping process, while minimizing the number of sub-
divisions. Fragments associated with occlusion-based reprojection
errors are identified and correctly reshaded via hardware accelerated
ray-tracing.

Our performance analysis has shown that the system achieves a
significant speed up over a naive stereo rendering, while introducing
negligible loss in quality. Due to the use of adaptive ray-tracing,
the system does not suffer from typical inpainting problems and
scales very well with scene complexity and rendering resolution,
even surpassing a rasterization-based hole-filling approach.

For future work, we plan on evaluating the visual quality of our
rendering system in a user study, especially in the context of our
perceptually motivated grid subdivision heuristic. Furthermore, we
would like to exploit the temporal coherence of a scene and improve
the system’s efficiency by additionally reprojecting from previous
frames. Lastly, an efficient handling of semi-transparent geome-
try and perceptually correct specular reflections, using hardware
accelerated ray-tracing, would be another interesting research topic.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
feedback. This work was partially funded by the German Federal
Ministry of Education and Research (BMBF) under grant number
02K16C232 as part of the project Retail 4.0.

6

© 2020 IEEE. This is the author’s version of the article that will be published in the proceedings of 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR).

1.5

2.0

2.5

3.0

3.5

4.0

0 250 500 750 1000

Fr
am

e
tim

e
[m

s]

Frame number

Bistro In. (HD)
Plain Stereo Repro RT Repro ReRaster

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 250 500 750 1000

Fr
am

e
tim

e
[m

s]

Frame number

Bistro Ex. (HD)
Plain Stereo Repro RT Repro ReRaster

2.0

4.0

6.0

8.0

10.0

0 250 500 750 1000

Fr
am

e
tim

e
[m

s]

Frame number

Bistro Night (HD)
Plain Stereo Repro RT Repro ReRaster

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 250 500 750 1000

Fr
am

e
tim

e
[m

s]

Frame number

Temple (HD)
Plain Stereo Repro RT Repro ReRaster

6

8

10

12

14

0 250 500 750 1000

Fr
am

e
tim

e
[m

s]

Frame number

Bistro In. (4K)
Plain Stereo Repro RT Repro ReRaster

6

8

10

12

14

16

18

0 250 500 750 1000

Fr
am

e
tim

e
[m

s]

Frame number

Bistro Ex. (4K)
Plain Stereo Repro RT Repro ReRaster

10

12

14

16

18

20

22

0 250 500 750 1000

Fr
am

e
tim

e
[m

s]

Frame number

Bistro Night (4K)
Plain Stereo Repro RT Repro ReRaster

7

9

11

13

15

17

19

0 250 500 750 1000

Fr
am

e
tim

e
[m

s]

Frame number

Temple (4K)
Plain Stereo Repro RT Repro ReRaster

Figure 8: Frame times of all rendering systems for all four test scenes measured for HD and 4K.

0

1

2

3

4

0 250 500 750 1000

G
PU

 ti
m

e
[m

s]

Frame number

Repro RT - Bistro In. (HD)
Tone mapping

RT hole-filling

Tessellation +
Render grid
Comp. tess.

Lighting

G-Buffer

Wait for CPU

0

1

2

3

4

0 250 500 750 1000

G
PU

 ti
m

e
[m

s]

Frame number

Repro ReRaster - Bistro In. (HD)
Tone mapping

Re-raster
hole-filling
Tessellation +
Render grid
Comp. tess.

Lighting

G-Buffer

Wait for CPU

0%

2%

4%

6%

8%

10%

12%

0.1

0.2

0.3

0.4

0.5

0.6

0 250 500 750 1000

Pr
op

or
tio

n
of

 h
ol

es

G
PU

 ti
m

e
[m

s]

Frame number

Hole-filling performance - Bistro In. (HD)
Holes RT hole-filling Re-raster hole-filling

0

2

4

6

8

10

0 250 500 750 1000

G
PU

 ti
m

e
[m

s]

Frame number

Repro RT - Bistro In. (4K)
Tone mapping

RT hole-filling

Tessellation +
Render grid
Comp. tess.

Lighting

G-Buffer

Wait for CPU

0

2

4

6

8

10

0 250 500 750 1000

G
PU

 ti
m

e
[m

s]

Frame number

Repro ReRaster - Bistro In. (4K)
Tone mapping

Re-raster
hole-filling
Tessellation +
Render grid
Comp. tess.

Lighting

G-Buffer

Wait for CPU

0%

2%

4%

6%

8%

10%

12%

0

0.5

1

1.5

2

0 250 500 750 1000

Pr
op

or
tio

n
of

 h
ol

es

G
PU

 ti
m

e
[m

s]

Frame number

Hole-filling performance - Bistro In. (4K)
Holes RT hole-filling Re-raster hole-filling

Figure 9: GPU times for individual render stages measured in the Bistro Interior scene (left and middle) and the isolated performance measurements
for each hole-filling pass (right).

REFERENCES

[1] S. J. Adelson, J. B. Bentley, I. S. Chong, L. F. Hodges, and J. Winograd.
Simultaneous generation of stereoscopic views. Computer Graphics
Forum, 10(1):3–10, 1991. doi: 10.1111/1467-8659.1010003

[2] S. J. Adelson and L. F. Hodges. Visible surface ray-tracing of stereo-
scopic images. In Proceedings of the 30th Annual Southeast Regional
Conference, pp. 148–156. ACM, 1992. doi: 10.1145/503720.503778

[3] S. J. Adelson and L. F. Hodges. Stereoscopic ray-tracing. The Visual
Computer, 10(3):127–144, 1993. doi: 10.1007/BF01900903

[4] S. J. Adelson and L. F. Hodges. Generating exact ray-traced animation
frames by reprojection. IEEE Computer Graphics and Applications,
15(3):43–52, 1995. doi: 10.1109/38.376612

[5] T. Akenine-Möller, J. Nilsson, M. Andersson, C. Barré-Brisebois,
R. Toth, and T. Karras. Texture level of detail strategies for real-time
ray tracing. In E. Haines and T. Akenine-Möller, eds., Ray Tracing
Gems, pp. 321–345. Apress, 2019.

[6] J. Amanatides. Ray tracing with cones. SIGGRAPH Computer Graph-

ics, 18(3):129–135, 1984. doi: 10.1145/964965.808589
[7] Amazon Lumberyard. Amazon lumberyard bistro, open research con-

tent archive (orca), 2017. http://developer.nvidia.com/orca/
amazon-lumberyard-bistro.

[8] C. Barré-Brisebois, H. Halén, G. Wihlidal, A. Lauritzen, J. Bekkers,
T. Stachowiak, and J. Andersson. Hybrid rendering for real-time ray
tracing. In E. Haines and T. Akenine-Möller, eds., Ray Tracing Gems,
pp. 353–370. Apress, 2019.

[9] N. Benty, K.-H. Yao, T. Foley, M. Oakes, C. Lavelle, and C. Wyman.
The Falcor rendering framework, 2018. https://github.com/
NVIDIAGameWorks/Falcor.

[10] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image in-
painting. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 417–424. ACM, 2000. doi:
10.1145/344779.344972

[11] H. Bowles, K. Mitchell, R. W. Sumner, J. Moore, and M. Gross. Itera-
tive image warping. Computer Graphics Forum, 31(2):237–246, 2012.

7

https://doi.org/10.1111/1467-8659.1010003
https://doi.org/10.1111/1467-8659.1010003
https://doi.org/10.1111/1467-8659.1010003
https://doi.org/10.1111/1467-8659.1010003
https://doi.org/10.1111/1467-8659.1010003
https://doi.org/10.1111/1467-8659.1010003
https://doi.org/10.1111/1467-8659.1010003
https://doi.org/10.1145/503720.503778
https://doi.org/10.1145/503720.503778
https://doi.org/10.1145/503720.503778
https://doi.org/10.1145/503720.503778
https://doi.org/10.1145/503720.503778
https://doi.org/10.1145/503720.503778
https://doi.org/10.1145/503720.503778
https://doi.org/10.1145/503720.503778
https://doi.org/10.1145/503720.503778
https://doi.org/10.1007/BF01900903
https://doi.org/10.1007/BF01900903
https://doi.org/10.1007/BF01900903
https://doi.org/10.1007/BF01900903
https://doi.org/10.1007/BF01900903
https://doi.org/10.1007/BF01900903
https://doi.org/10.1007/BF01900903
https://doi.org/10.1109/38.376612
https://doi.org/10.1109/38.376612
https://doi.org/10.1109/38.376612
https://doi.org/10.1109/38.376612
https://doi.org/10.1109/38.376612
https://doi.org/10.1109/38.376612
https://doi.org/10.1109/38.376612
https://doi.org/10.1145/964965.808589
https://doi.org/10.1145/964965.808589
https://doi.org/10.1145/964965.808589
https://doi.org/10.1145/964965.808589
https://doi.org/10.1145/964965.808589
https://doi.org/10.1145/964965.808589
https://doi.org/10.1145/964965.808589
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/344779.344972
https://doi.org/10.1145/344779.344972
https://doi.org/10.1145/344779.344972
https://doi.org/10.1145/344779.344972
https://doi.org/10.1145/344779.344972
https://doi.org/10.1145/344779.344972
https://doi.org/10.1145/344779.344972
https://doi.org/10.1145/344779.344972
https://doi.org/10.1145/344779.344972
https://doi.org/10.1145/344779.344972
https://doi.org/10.1111/j.1467-8659.2012.03002.x
https://doi.org/10.1111/j.1467-8659.2012.03002.x
https://doi.org/10.1111/j.1467-8659.2012.03002.x
https://doi.org/10.1111/j.1467-8659.2012.03002.x
https://doi.org/10.1111/j.1467-8659.2012.03002.x
https://doi.org/10.1111/j.1467-8659.2012.03002.x

© 2020 IEEE. This is the author’s version of the article that will be published in the proceedings of 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR).

doi: 10.1111/j.1467-8659.2012.03002.x
[12] S. E. Chen and L. Williams. View interpolation for image synthesis.

In Proceedings of the 20th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’93, p. 279–288. Association
for Computing Machinery, New York, NY, USA, 1993. doi: 10.1145/
166117.166153

[13] B. E. Coutant and G. Westheimer. Population distribution of stereo-
scopic ability. Ophthalmic and Physiological Optics, 13(1):3–7, 1993.
doi: 10.1111/j.1475-1313.1993.tb00419.x

[14] A. Criminisi, P. Pérez, and K. Toyama. Region filling and object
removal by exemplar-based image inpainting. IEEE Transactions on
image processing, 13(9):1200–1212, 2004.

[15] P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel.
Perceptually-motivated real-time temporal upsampling of 3d content
for high-refresh-rate displays. Computer Graphics Forum, 29(2):713–
722, 2010. doi: 10.1111/j.1467-8659.2009.01641.x

[16] P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel.
Adaptive image-space stereo view synthesis. In Vision, Modeling and
Visualization Workshop, pp. 299–306, 2010.

[17] Epic Games. Unreal engine sun temple, open research con-
tent archive (orca), 2017. https://developer.nvidia.com/

ue4-sun-temple.
[18] J. P. Ewins, M. D. Waller, M. White, and P. F. Lister. Mip-map level

selection for texture mapping. IEEE Transactions on Visualization and
Computer Graphics, 4(4):317–329, 1998. doi: 10.1109/2945.765326

[19] J. D. Ezell and L. F. Hodges. Some preliminary results on using spatial
locality to speed up ray tracing of stereoscopic images. In Stereoscopic
Displays and Applications, vol. 1256, pp. 298–306. SPIE, 1990. doi:
10.1117/12.19912

[20] S. Friston, T. Ritschel, and A. Steed. Perceptual rasterization for head-
mounted display image synthesis. ACM Trans. Graph., 38(4):97:1–
97:14, 2019. doi: 10.1145/3306346.3323033

[21] E. Haines and T. Akenine-Möller, eds. Ray Tracing Gems. Apress,
2019. doi: 10.1007/978-1-4842-4427-2

[22] Y. He, K. Fatahalian, and T. Foley. Slang: Language mechanisms for
extensible real-time shading systems. ACM Trans. Graph., 37(4):141:1–
141:13, 2018. doi: 10.1145/3197517.3201380

[23] B. Karis. High quality temporal anti-aliasing. Advances in Real-Time
Rendering for Games, SIGGRAPH Courses, 2014.

[24] S. Lee, Y. Kim, and E. Eisemann. Iterative depth warping. ACM Trans.
Graph., 37(5):177:1–177:13, 2018. doi: 10.1145/3190859

[25] Z. Majercik, J.-P. Guertin, D. Nowrouzezahrai, and M. McGuire. Dy-
namic diffuse global illumination with ray-traced irradiance fields.
Journal of Computer Graphics Techniques (JCGT), 8(2):1–30, 2019.

[26] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping.
In Proceedings of the 1997 Symposium on Interactive 3D Graphics, pp.
7–16. ACM, 1997. doi: 10.1145/253284.253292

[27] A. Marrs, J. Spjut, H. Gruen, R. Sathe, and M. McGuire. Adap-
tive temporal antialiasing. In Proceedings of the Conference on
High-Performance Graphics, pp. 1:1–1:4. ACM, 2018. doi: 10.1145/
3231578.3231579

[28] L. McMillan and G. Bishop. Head-tracked stereoscopic display using
image warping. In Proceedings of SPIE, vol. 2409, pp. 21–30, 1995.
doi: 10.1117/12.205865

[29] M. Meehan, S. Razzaque, M. C. Whitton, and F. P. Brooks. Effect of
latency on presence in stressful virtual environments. In Proceedings
of the IEEE Virtual Reality, pp. 141–148, 2003. doi: 10.1109/VR.2003
.1191132

[30] D. Nehab, P. V. Sander, J. Lawrence, N. Tatarchuk, and J. R. Isidoro.
Accelerating real-time shading with reverse reprojection caching. In
Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Sympo-
sium on Graphics Hardware, pp. 25–35, 2007.

[31] M. Nießner, B. Keinert, M. Fisher, M. Stamminger, C. Loop, and
H. Schäfer. Real-time rendering techniques with hardware tessellation.
Computer Graphics Forum, 35(1):113–137, 2016. doi: 10.1111/cgf.
12714

[32] H. Qu, M. Wan, J. Qin, and A. Kaufman. Image based rendering with
stable frame rates. In Proceedings of IEEE Visualization 2000, pp.
251–258, 2000.

[33] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point ren-

dering system for large meshes. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pp. 343–
352. ACM Press/Addison-Wesley Publishing Co., 2000.

[34] A. Schollmeyer, S. Schneegans, S. Beck, A. Steed, and B. Froehlich.
Efficient hybrid image warping for high frame-rate stereoscopic ren-
dering. IEEE Transactions on Visualization and Computer Graphics,
23(4):1332–1341, 2017. doi: 10.1109/TVCG.2017.2657078

[35] R. Toth, J. Hasselgren, and T. Akenine-Möller. Perception of highlight
disparity at a distance in consumer head-mounted displays. In Proceed-
ings of the 7th Conference on High-Performance Graphics, pp. 61–66.
ACM, 2015. doi: 10.1145/2790060.2790062

[36] M. Wan, N. Zhang, A. Kaufman, and H. Qu. Interactive stereoscopic
rendering of voxel-based terrain. In Proceedings of IEEE Virtual
Reality 2000, pp. 197–206, 2000. doi: 10.1109/VR.2000.840499

[37] M. Weier, T. Roth, E. Kruijff, A. Hinkenjann, A. Pérard-Gayot,
P. Slusallek, and Y. Li. Foveated real-time ray tracing for head-mounted
displays. Computer Graphics Forum, 35(7):289–298, 2016. doi: 10.
1111/cgf.13026

[38] L. Westover. Footprint evaluation for volume rendering. ACM Siggraph
Computer Graphics, 24(4):367–376, 1990.

[39] G. Wolberg. Digital Image Warping. IEEE Computer Society Press,
Los Alamitos, 1990.

[40] Z. Xu and J. Sun. Image inpainting by patch propagation using patch
sparsity. IEEE Transactions on Image Processing, 19(5):1153–1165,
2010. doi: 10.1109/TIP.2010.2042098

[41] L. Yang, Y.-C. Tse, P. V. Sander, J. Lawrence, D. Nehab, H. Hoppe, and
C. L. Wilkins. Image-based bidirectional scene reprojection. In Pro-
ceedings of the 2011 SIGGRAPH Asia Conference, pp. 150:1–150:10.
ACM, 2011. doi: 10.1145/2024156.2024184

[42] R. A. Yeh, C. Chen, T. Yian Lim, A. G. Schwing, M. Hasegawa-
Johnson, and M. N. Do. Semantic image inpainting with deep genera-
tive models. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

8

https://doi.org/10.1111/j.1467-8659.2012.03002.x
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1111/j.1475-1313.1993.tb00419.x
https://doi.org/10.1111/j.1475-1313.1993.tb00419.x
https://doi.org/10.1111/j.1475-1313.1993.tb00419.x
https://doi.org/10.1111/j.1475-1313.1993.tb00419.x
https://doi.org/10.1111/j.1475-1313.1993.tb00419.x
https://doi.org/10.1111/j.1475-1313.1993.tb00419.x
https://doi.org/10.1111/j.1475-1313.1993.tb00419.x
https://doi.org/10.1111/j.1467-8659.2009.01641.x
https://doi.org/10.1111/j.1467-8659.2009.01641.x
https://doi.org/10.1111/j.1467-8659.2009.01641.x
https://doi.org/10.1111/j.1467-8659.2009.01641.x
https://doi.org/10.1111/j.1467-8659.2009.01641.x
https://doi.org/10.1111/j.1467-8659.2009.01641.x
https://doi.org/10.1111/j.1467-8659.2009.01641.x
https://doi.org/10.1111/j.1467-8659.2009.01641.x
https://developer.nvidia.com/ue4-sun-temple
https://developer.nvidia.com/ue4-sun-temple
https://developer.nvidia.com/ue4-sun-temple
https://developer.nvidia.com/ue4-sun-temple
https://developer.nvidia.com/ue4-sun-temple
https://developer.nvidia.com/ue4-sun-temple
https://developer.nvidia.com/ue4-sun-temple
https://developer.nvidia.com/ue4-sun-temple
https://doi.org/10.1109/2945.765326
https://doi.org/10.1109/2945.765326
https://doi.org/10.1109/2945.765326
https://doi.org/10.1109/2945.765326
https://doi.org/10.1109/2945.765326
https://doi.org/10.1109/2945.765326
https://doi.org/10.1109/2945.765326
https://doi.org/10.1109/2945.765326
https://doi.org/10.1117/12.19912
https://doi.org/10.1117/12.19912
https://doi.org/10.1117/12.19912
https://doi.org/10.1117/12.19912
https://doi.org/10.1117/12.19912
https://doi.org/10.1117/12.19912
https://doi.org/10.1117/12.19912
https://doi.org/10.1117/12.19912
https://doi.org/10.1117/12.19912
https://doi.org/10.1117/12.19912
https://doi.org/10.1117/12.19912
https://doi.org/10.1145/3306346.3323033
https://doi.org/10.1145/3306346.3323033
https://doi.org/10.1145/3306346.3323033
https://doi.org/10.1145/3306346.3323033
https://doi.org/10.1145/3306346.3323033
https://doi.org/10.1145/3306346.3323033
https://doi.org/10.1145/3306346.3323033
https://doi.org/10.1145/3306346.3323033
https://doi.org/10.1007/978-1-4842-4427-2
https://doi.org/10.1007/978-1-4842-4427-2
https://doi.org/10.1007/978-1-4842-4427-2
https://doi.org/10.1007/978-1-4842-4427-2
https://doi.org/10.1007/978-1-4842-4427-2
https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3190859
https://doi.org/10.1145/3190859
https://doi.org/10.1145/3190859
https://doi.org/10.1145/3190859
https://doi.org/10.1145/3190859
https://doi.org/10.1145/3190859
https://doi.org/10.1145/3190859
http://jcgt.org/published/0008/02/01/
http://jcgt.org/published/0008/02/01/
http://jcgt.org/published/0008/02/01/
http://jcgt.org/published/0008/02/01/
http://jcgt.org/published/0008/02/01/
http://jcgt.org/published/0008/02/01/
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1117/12.205865
https://doi.org/10.1117/12.205865
https://doi.org/10.1117/12.205865
https://doi.org/10.1117/12.205865
https://doi.org/10.1117/12.205865
https://doi.org/10.1117/12.205865
https://doi.org/10.1117/12.205865
https://doi.org/10.1117/12.205865
https://doi.org/10.1109/VR.2003.1191132
https://doi.org/10.1109/VR.2003.1191132
https://doi.org/10.1109/VR.2003.1191132
https://doi.org/10.1109/VR.2003.1191132
https://doi.org/10.1109/VR.2003.1191132
https://doi.org/10.1109/VR.2003.1191132
https://doi.org/10.1109/VR.2003.1191132
https://doi.org/10.1109/VR.2003.1191132
https://doi.org/10.1109/VR.2003.1191132
https://doi.org/10.1111/cgf.12714
https://doi.org/10.1111/cgf.12714
https://doi.org/10.1111/cgf.12714
https://doi.org/10.1111/cgf.12714
https://doi.org/10.1111/cgf.12714
https://doi.org/10.1111/cgf.12714
https://doi.org/10.1111/cgf.12714
https://doi.org/10.1111/cgf.12714
https://doi.org/10.1109/TVCG.2017.2657078
https://doi.org/10.1109/TVCG.2017.2657078
https://doi.org/10.1109/TVCG.2017.2657078
https://doi.org/10.1109/TVCG.2017.2657078
https://doi.org/10.1109/TVCG.2017.2657078
https://doi.org/10.1109/TVCG.2017.2657078
https://doi.org/10.1109/TVCG.2017.2657078
https://doi.org/10.1145/2790060.2790062
https://doi.org/10.1145/2790060.2790062
https://doi.org/10.1145/2790060.2790062
https://doi.org/10.1145/2790060.2790062
https://doi.org/10.1145/2790060.2790062
https://doi.org/10.1145/2790060.2790062
https://doi.org/10.1145/2790060.2790062
https://doi.org/10.1145/2790060.2790062
https://doi.org/10.1145/2790060.2790062
https://doi.org/10.1109/VR.2000.840499
https://doi.org/10.1109/VR.2000.840499
https://doi.org/10.1109/VR.2000.840499
https://doi.org/10.1109/VR.2000.840499
https://doi.org/10.1109/VR.2000.840499
https://doi.org/10.1109/VR.2000.840499
https://doi.org/10.1109/VR.2000.840499
https://doi.org/10.1109/VR.2000.840499
https://doi.org/10.1111/cgf.13026
https://doi.org/10.1111/cgf.13026
https://doi.org/10.1111/cgf.13026
https://doi.org/10.1111/cgf.13026
https://doi.org/10.1111/cgf.13026
https://doi.org/10.1111/cgf.13026
https://doi.org/10.1111/cgf.13026
https://doi.org/10.1111/cgf.13026
https://doi.org/10.1111/cgf.13026
https://doi.org/10.1109/TIP.2010.2042098
https://doi.org/10.1109/TIP.2010.2042098
https://doi.org/10.1109/TIP.2010.2042098
https://doi.org/10.1109/TIP.2010.2042098
https://doi.org/10.1109/TIP.2010.2042098
https://doi.org/10.1109/TIP.2010.2042098
https://doi.org/10.1109/TIP.2010.2042098
https://doi.org/10.1145/2024156.2024184
https://doi.org/10.1145/2024156.2024184
https://doi.org/10.1145/2024156.2024184
https://doi.org/10.1145/2024156.2024184
https://doi.org/10.1145/2024156.2024184
https://doi.org/10.1145/2024156.2024184
https://doi.org/10.1145/2024156.2024184
https://doi.org/10.1145/2024156.2024184
https://doi.org/10.1145/2024156.2024184

	Introduction
	Related Work
	Reprojection
	Hole-Filling
	Ray-Tracing

	Hybrid Stereo Rendering
	3D Grid Warping
	Subdivision Heuristic
	Disocclusion Detection
	Hole-Filling
	Rasterization-based Hole-Filling

	Performance Analysis
	Test Setup
	Results
	Discussion and Limitations

	Conclusion and Future Work

