
Performance of Augmented Reality
Remote Rendering via Mobile Network

K. M. Börner1

A. Fuhrmann2

M. A. Bösinger1 1Vodafone GmbH, Germany
{kaimanuel.boerner, michaelandreas.boesinger}@vodafone.com

2TH Köln, Germany
arnulph.fuhrmann@th-koeln.de

Introduction

2

C1 Public

Motivation

3

Markerless
tracking with
ARCore and

ARKit

Tracking,
rendering &

interaction on
end device

User experience
heavily depends
on the available

performance

Visual quality
limited

High stress on
CPU, GPU and

battery

C1 Public

Idea

Move rendering and
interaction to server

Usage of

Remote-Rendering

(Mobile) Edge Computing System

Implement Remote-Rendering procedure for
Unity AR Apps in order to increase visual
quality

4

cf. [SHI15]

Model Based Image Based
Original Simplified Image+Depth Image

Progressive Environment Map

Model+Image

more Network Bandwidth less
Computation on Client

Related Work

5

C1 Public

Remote-Rendering

6

Early work on remote rendering was already performed over twenty years ago
[Lev95, HS98].
Two key challenges are described by Shi and Hsu [SH15] in their survey:

• The interaction latency
• time between the user interaction and the display of the result
• Image-based approaches are more affected
• Usage of depth map and warping can reduce latency, but artifacts can occur

[SJNC09, CHC17].
• Limitations of networks such as the bandwidth

C1 Public

Mobile Edge Computing

7

• In MEC, the server is part of the providers network
– Ideally at the mobile network tower

• Bohez et al. [BTV+13] implemented a middleware platform for collaborative applications
– data together with its processing are shared between multiple user.

• Latency of markerless tracking and object recognition can be reduced [ZHH18]
– offloading computation intensive tasks to the edge cloud

System Overview

8

C1 Public

System Pipeline

9

Legacy rendering pipeline with DirectX11 Lightweight rendering pipeline with GLES

C1 Public

10

• Server renders in texture

• Copy texture to NVENC
– Use native API, for example DirectX11

• Encoding on GPU
– No copy of texture between CPU and GPU

• No transparency in AVC & HEVC
 Client blends transmitted video in front of camera frame

 „Real world“ pixel need to be visible

 Transparent pixels are marked with specific colour, for
example black (RGB= 0,0,0)

 Color/brightness limit (compression) as protective area
to keying color

 Client set decoded pixel transparent

Video Encoding & Chroma Keying

cf. [NVI20]

CPU

Buffer NVENC

CUDA Cores

Encode HW

Formats

H.264

H.265

Bit depth

8 bit

Color

YUV 4:4:4

YUV 4:2:0

Resolution

Up tp 8K

GPU

Results

11

C1 Public

Prototypes

12

1. Prototype:
• latency

measurements
• a rudimentary

scene

2. Prototype:
• frame time

measurements
• a complex scene

C1 Public

0

50

100

150

200

250

300

350

400

Local WiFi LTE

Video latency in
ms

Server Client Laptop

Results:

• Latency between Client and Laptop is
different

• Video latency is better with VLC

• Audio latency is better with
UniversalMediaPlayer

Video and Audio Latency

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Local WiFI LTE

Audio latency in
ms

Server Client Laptop

13

C1 Public

Demovideo AR

14

• Local pipelines
– LWRP: Lightweight rendering

pipeline

– LRP: Legacy rendering
pipeline

• RRP: Remote-Rendering
– Server = Legacy rendering

– Client = Lightweight rendering

• Spotlight tunnel scene

• AR app (1:100)

• 1440x2960

• Real movement
synchronized

LWRP LRP RRP

C1 Public

Performance Comparison AR
HD1080 & HD1440

15

20

50

80

110

140

170

1 251 501 751 1001 1251 1501

Fr
am

e
tim

e
(m

s)

Frame number

LRP

LWRP

RRP (W-LAN)

RRP (LTE)

20
50
80

110
140
170
200
230
260
290

1 251 501 751 1001 1251 1501 1751

Fr
am

e
tim

e
(m

s)

Frame number

Several frames lost:
Interruption

One frame lost

Local pipelines have
higher frame times

C1 Public

Demovideo Fullscreen

16

LWRP LRP RRP
• Local pipelines

– LWRP: Lightweight rendering
pipeline

– LRP: Legacy rendering
pipeline

• RRP: Remote-Rendering
– Server = Legacy rendering

– Client = Lightweight rendering

• Spotlight tunnel scene

• Fullscreen app (1:10)

• 1440x2960

• Virtual camera
movement synchronized

C1 Public

Performance Comparison Fullscreen
HD1080 & HD1440

17

20
50
80

110
140
170
200
230
260
290
320
350

1 251 501 751 1001 1251 1501 1751

Fr
am

e
tim

e
(m

s)

Frame number

20
50
80

110
140
170
200
230

1 251 501 751 1001 1251 1501

Fr
am

e
tim

e
(m

s)

Frame number

LRP

LWRP

RRP (W-LAN)

RRP (LTE)

Several frames lost:
Interruption

One frame lost

Local pipelines have
higher frame times

C1 Public

0

10

20

30

40

50

60

70

80

90

100

AR Fullscreen

Pe
rfo

rm
an

ce
 (%

)

HD1080

LRP LWRP RRP

• Modern devices throttle their performance
under certain circumstances

• Effect occurred in the applications during five
test runs

• RRP has better long-use performance

Performance Throttling

25.09.2020

18

AR Fullscreen

HD1440

LRP LWRP RRP

18

C1 Public

0

1

2

3

4

5

6

7

8

Minimum Maximum

Bi
t r

at
e

(M
bp

s)

HD1080

AR Fullscreen

• AR has smaller number of used pixels

• Unused pixels can be compressed more
effectively
– No major changes

• Encoder is exhausted in full screen
applications
– Used configured 7 Mbps completely

– Higher bit rate required to avoid coding artifacts and
dropouts

• The AR version can be transferred without
coding artifacts

Video Bandwidth

25.09.2020

19

Minimum Maximum

HD1440

AR Fullscreen

19

Conclusions

20

C1 Public

Conclusions

Proof-of-Concept works
 Better frame times at high resolution
 Less throttling
 Further work is necessary

Only a slight difference in the video latency over LTE & WiFi
• Optimization of the ultra-reliable and low-latency communication capability of the

integrated media player is necessary

Further investigations with 5G NR and slicing
• Higher data rates
• Guaranteed data rate and network latency

21

C1 Public

Thank you for your
attention!

References:
[BTV+13] Steven Bohez, Joeri De Turck, Tim Verbelen, Pieter Simoens, and Bart
Dhoedt. Mobile, collaborative augmented reality using cloudlets. In 2013
International Conference on MOBILe Wireless MiddleWARE, Operating Systems,
and Applications. European Alliance for Innovation, nov 2013.

[CHC17] Yu-Jung Chen, Chung-Yao Hung, and Shao-Yi Chien. Distributed
rendering: Interaction delay reduction in remote rendering with client-end gpu-
accelerated scene warping technique. In 2017 IEEE International Conference
on Multimedia Expo Workshops (ICMEW), pages 67–72, July 2017.

[HS98] Gerd Hesina and Dieter Schmalstieg. A network architecture for remote
rendering. In Proceedings of the 2nd International Workshop on Distributed
Interactive Simulation and Real-Time Applications, pages 88–91, 1998.

[Lev95] Marc Levoy. Polygon-assisted JPEG and MPEG compression of
synthetic images. In SIGGRAPH ’95, page 21–28, New York, NY, USA, 1995.
ACM.

[NVI20] NVIDIA Corporation. Nvidia video codec sdk | nvidia developer.
https://developer.nvidia.com/nvidia-video-codec-sdk. Accessed: 01.09.2020.

[SH15] Shu Shi and Cheng-Hsin Hsu. A survey of interactive remote rendering
systems. ACM Computing Surveys, 47(4):1–29, may 2015.

[SJNC09] Shu Shi, Won J. Jeon, Klara Nahrstedt, and Roy H. Campbell. Real-time
remote rendering of 3D video for mobile devices. In Proceedings of the 17th
ACM International Conference

[ZHH18] Wenxiao Zhang, Bo Han, and Pan Hui. Jaguar: Low latency mobile
augmented reality with flexible tracking. In Proceedings of the 26th ACM
International Conference on Multimedia, MM ’18, pages 355–363, New York,
NY, USA, 2018. ACM.

22

Do you have any further
Questions?

Please feel free to ask!

