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Motivation
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Idea

Move rendering and 
interaction to server

Usage of 

Remote-Rendering

(Mobile) Edge Computing System

Implement Remote-Rendering procedure for 
Unity AR Apps in order to increase visual 
quality
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cf. [SHI15]
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Remote-Rendering
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Early work on remote rendering was already performed over twenty years ago 
[Lev95, HS98].
Two key challenges are described by Shi and Hsu [SH15] in their survey:

• The interaction latency
• time between the user interaction and the display of the result
• Image-based approaches are more affected
• Usage of depth map and warping can reduce latency, but artifacts can occur 

[SJNC09, CHC17].
• Limitations of networks such as the bandwidth
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Mobile Edge Computing
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• In MEC, the server is part of the providers network
– Ideally at the mobile network tower

• Bohez et al. [BTV+13] implemented a middleware platform for collaborative applications
– data together with its processing are shared between multiple user.

• Latency of markerless tracking and object recognition can be reduced [ZHH18]
– offloading computation intensive tasks to the edge cloud
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System Pipeline
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Legacy rendering pipeline with DirectX11 Lightweight rendering pipeline with GLES
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• Server renders in texture

• Copy texture to NVENC
– Use native API, for example DirectX11

• Encoding on GPU
– No copy of texture between CPU and GPU

• No transparency in AVC & HEVC 
 Client blends transmitted video in front of camera frame

 „Real world“ pixel need to be visible

 Transparent pixels are marked with specific colour, for 
example black (RGB= 0,0,0)

 Color/brightness limit (compression) as protective area 
to keying color

 Client set decoded pixel transparent

Video Encoding & Chroma Keying

cf. [NVI20]

CPU

Buffer NVENC

CUDA Cores

Encode HW

Formats

H.264

H.265

Bit depth

8 bit

Color

YUV 4:4:4

YUV 4:2:0

Resolution

Up tp 8K

GPU
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Prototypes
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1. Prototype:
• latency

measurements
• a rudimentary

scene

2. Prototype:
• frame time 

measurements
• a complex scene



C1 Public

0

50

100

150

200

250

300

350

400

Local WiFi LTE

Video latency in 
ms

Server Client Laptop

Results:

• Latency between Client and Laptop is 
different

• Video latency is better with VLC

• Audio latency is better with 
UniversalMediaPlayer

Video and Audio Latency
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Demovideo AR
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• Local pipelines
– LWRP: Lightweight rendering 

pipeline 

– LRP: Legacy rendering 
pipeline 

• RRP: Remote-Rendering
– Server = Legacy rendering

– Client = Lightweight rendering

• Spotlight tunnel scene

• AR app (1:100)

• 1440x2960

• Real movement 
synchronized

LWRP LRP RRP
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Performance Comparison AR
HD1080 & HD1440
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Demovideo Fullscreen

16

LWRP LRP RRP
• Local pipelines

– LWRP: Lightweight rendering 
pipeline 

– LRP: Legacy rendering 
pipeline 

• RRP: Remote-Rendering
– Server = Legacy rendering

– Client = Lightweight rendering

• Spotlight tunnel scene

• Fullscreen app (1:10)

• 1440x2960

• Virtual camera 
movement synchronized
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Performance Comparison Fullscreen
HD1080 & HD1440
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• Modern devices throttle their performance 
under certain circumstances

• Effect occurred in the applications during five 
test runs

• RRP has better long-use performance

Performance Throttling

25.09.2020

18

AR Fullscreen

HD1440

LRP LWRP RRP

18



C1 Public

0

1

2

3

4

5

6

7

8

Minimum Maximum

Bi
t r

at
e 

(M
bp

s)

HD1080

AR Fullscreen

• AR has smaller number of used pixels

• Unused pixels can be compressed more 
effectively
– No major changes

• Encoder is exhausted in full screen 
applications
– Used configured 7 Mbps completely

– Higher bit rate required to avoid coding artifacts and 
dropouts

• The AR version can be transferred without 
coding artifacts

Video Bandwidth
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Conclusions

Proof-of-Concept works
 Better frame times at high resolution
 Less throttling
 Further work is necessary

Only a slight difference in the video latency over LTE & WiFi
• Optimization of the ultra-reliable and low-latency communication capability of the 

integrated media player is necessary

Further investigations with 5G NR and slicing
• Higher data rates
• Guaranteed data rate and network latency
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Thank you for your 
attention!
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Do you have any further
Questions?

Please feel free to ask!


