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Abstract—Hands are fundamental to conveying emotions and
ideas, especially in sign language. In the context of virtual reality,
motion capture is becoming essential for mapping real human
movements to avatars in immersive environments. While current
hand motion capture methods feature partly great usability,
accuracy, and real-time performance, they have limitations.
Industry-standard motion capture methods with sensor gloves
lead to acceptable results, but still produce occasional errors
due to proximity of the fingers and sensor drifts. This, in
turn, requires time-consuming correction and manual labeling of
optical markers during post-processing for offline use cases and
prohibits the use in real-time scenarios as VR communication.
To overcome these limitations, we introduce a novel hybrid hand
pose estimation method that leverages both an optical motion
capture system and a color-coded fabric glove. This approach
merges the strengths of both techniques, enabling the automated
labeling of 3D marker positions through a data-driven machine-
learning approach. Using a spherical capture rig and a deep
learning algorithm, we improve efficiency and accuracy. The
labeled markers then drive a robust optimization procedure
for solving hand posture, accounting for limitations in finger
movements and validation checks. We evaluate our system in the
context of German sign language where we achieve an accuracy of
97% correct marker assignments. Our approach aims to enhance
the accuracy and immersion of sign language communication in
VR, making it more inclusive for both deaf and hearing people.

Index Terms—Hand Pose Estimation, Optical Motion Capture,
Virtual Reality, Sign Language, Accessibility

I. INTRODUCTION

Hands play an essential role in communication and expres-
sion across cultures, serving as powerful tools for conveying
emotions, ideas, and intentions. This universal significance is
particularly pronounced in sign language, where hands act as
the primary mode of communication, enabling the deaf and
hard-of-hearing communities to express complex thoughts and
feelings. Slight variations in hand placement, orientation, and
movement can drastically alter the message. Thereby, precise
hand positioning and finger posture are essential to accurately

capture these details, ensuring that the intended meanings are
correctly communicated.

Integrating the deaf and hearing impaired community for
avatar-based communication in virtual reality, another chal-
lenge emerges. Often, the lack of accuracy in tracking does
not allow to faithfully reproduce all communication channels.
As a consequence, speech becomes the dominant information
channel and accurate finger postures play a minor role. For
mixed avatar-mediated interaction in VR (hearing and deaf)
there is the possibility to have a one-sided communication
via speech bubbles to integrate the deaf and hearing impaired
community [1] or haptic feedback for guidance [2]. However,
adding gesture enhances immersion and engage in interactions
that mimic real-life experiences, thereby deepening the sense
of presence and engagement within an embodied virtual envi-
ronment [3]–[6].

Currently, there are three distinct methods to capture hand
movements. The first relies on optical motion capture which
uses cameras to track markers in 3D space. The second method
is using external gloves with sensors to estimate the current
hand pose. The third method involves data-driven approaches
utilizing machine learning, where hand poses are estimated
from images through training data.

While classical optical motion capture has high accuracy
but also the need for cost-intensive systems, data-driven ap-
proaches often use only a single camera to estimate the posture
but have limited accuracy in space. Sensor-based gloves tend
to overcome both of these drawbacks, however, they are often
bulky, deal with drift problems over time, and are hard to
calibrate.

For data-driven approaches, assumptions are made and
depth ambiguities arise when the camera cannot accurately
distinguish the distance of certain hand parts. Just relying
on visual data leads to inaccuracies resulting in distorted or
incorrect hand pose tracking, which is particularly problematic
in scenarios like sign language communication where preci-
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Fig. 1: Overview of our Deep Neural Labeling method with hand pose reconstruction based on German sign language motion
capture performances and a color glove. Motion capture data is captured in addition to video information. The unlabeled
point cloud of finger joint markers is assigned by an image reprojection and a subsequent neural network that has learned the
point cloud shape for a regression classification task. Finally, the assigned points are used to animate the hand by solving an
optimization problem to find the best joint angles qi by minimizing the positional error of the markers pi,j and fi,j(qi).

sion is crucial. That is also why, most available sign language
datasets primarily consist of static data like hand poses and
lack animation sequences [7], [8]. Yet, this transition of signs
is necessary in order to reproduce natural-looking sequences
since blending between static poses would lead to animations
that would look robotic.

However, solely using an optical motion capture system
does not result in perfect hand tracking. Estimating the hand
poses from unlabeled markers is still a demanding task due to
the proximity of the potential finger markers where occlusions
and marker swaps occur frequently. The high number of
degrees of freedom for fingers, self-similarity, and limited
space make it difficult to accurately capture poses such as
those needed for sign language.

By strategically positioning markers in critical areas by
reducing or optimizing the marker layout, occlusion-related
problems can be minimized [9]–[11]. Yet, the problem of
manually correcting the labeling of markers in a subsequent
process remains.

In this paper, we tackle the labeling problem by providing a
hybrid hand pose estimation based on a passive marker-based
optical motion capture system and a color-coded fabric glove.
By combining the strengths of both approaches and coupling
them with a data-driven approach we achieve a high accuracy
without the need for manual labeling.

In section III we introduce a hardware setup and a method
with two essential steps to animate hands for sign language
for a wide variety of applications such as avatar-based com-
munication in immersive environments. In the first step, we
overcome the problem of the manual labeling process in
section IV by introducing a novel color glove with markers
that are captured with a unique spherical recording rig. In
combination with synchronously taken video and computer

vision, the 3D marker positions are preliminary labeled using
color information. Since this information is not sufficient, our
novel machine learning approach (Deep Neural Labeling)
refines the labels by uniquely assigning markers for every
finger joint based on pre-trained data. In section V, these
labeled markers drive a custom skeleton hand model with
our optimization approach to animate the hand. Our hand
skeleton solver considers finger limitations and validation
checks including a collision test.

II. RELATED WORK

A. Motion Capture of Human Hands

Capturing complex 3D hand poses accurately from human
hand movements is a challenging task, considering the com-
plex dynamics of the flexibility and rapid angular movements
of the hands. However, extensive research has led to several
effective approaches, including optical, non-optical, and hybrid
methods, to address this challenge [12]. It can be categorized
into three groups [13], [14]:

1) Computer Vision: The fusion of camera technology and
computer vision for hand pose recognition provides precise
results, as depth imaging cameras or RGB cameras capture
the three-dimensional movements and gestures of the hands
[15]. Using multiple cameras in distinct layouts, 3D points
can be reconstructed via optical motion capture, and a full
skeleton pose is estimated [16].

2) Data gloves: Data gloves or wearable devices provide
an alternative way to record hand movements during sign
language. This technology does not require special cameras
and allows free movement of the hands, which is particularly
convenient for users. The recorded hand data is analyzed to
identify the hand poses being displayed. Chen et al. [13]
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categorize data gloves into four groups: Electromagnetic trans-
mitters [17], bending and stretch sensors [18], [19], inertial
measuring unity (IMU) [20] and exoskeletons [21]. These
data gloves and the respective sensors are suitable for mobile
applications, making the interaction with digital devices in
different environments easier [22], [23].

3) Machine Learning: By using machine learning tech-
niques such as Convolutional Neural Networks (CNNs), com-
plex hand postures can be recognized and classified in real-
time. This approach is particularly suitable for applications
that do not require specialized hardware, such as depth imag-
ing cameras, as conventional RGB cameras are sufficient to
detect hand poses. The use of machine learning enables cost-
effective and widespread implementation in various systems
and applications [24], [25]. However, due to their spatial
proximity to the body, the hands prove to be a critical aspect
that requires more detailed evaluation. Although the initial
impressions may seem plausible, they may not be sufficient for
the requirements of a performance motion capture application
[26]. Often, the first step is to extract depth information from
the images to generate a more precise pose based on this
information. However, the results obtained do not always show
the predicted accuracy. The evaluation is mostly performed
on pixel level and requires, in addition to a precise pose
reconstruction, the creation of an individual reconstructed
mesh [25]. The approach of animating hands in sign language
using machine learning and artificial intelligence offers several
advantages. By training models with large datasets of hand
poses from motion capture systems, highly accurate and real-
istic animations can be generated [24], [27], [28].

B. Labeling & Hand Pose Models in Motion Capture

There are several approaches to label markers in motion
capture. A promising approach is to group markers based on
pairwise distances and propagate this information into future
frames [29]. Another approach is to follow a starting position,
such as the T-pose, using the coordinate axes as an orientation
to define an initial layout [30]. Alternatively, large databases
of predefined poses can be used as presets to improve marker
assignment [31], [32]. Determining hand pose requires a
certain number of markers per finger [33]. However, such
dense marker layouts on the hand cause problems, especially
in large spaces and in combination with full-body tracking
[34]. For this reason, the study of specific marker layouts for
the hands is a widely studied area of research. Wheatland et
al. have investigated various layouts, including a maximally
reduced layout (one marker per finger joint) and a minimal
layout [10], [11], [35]. Despite the small number of markers,
all degrees of freedom of the hand can be adequately captured
and realized in the context of the application. It is possible
to further reduce the marker layout with inverse kinematics
techniques [36], [37]. The process of assigning the markers can
therefore also be seen as sorting the marker data. Therefore,
different markers are arranged into a certain structure, which
can be seen by e.g. an inverse of a permutation matrix [38].

1) Color-coded gloves: Previous work demonstrated how
colors can be used to achieve hand pose information only using
a color-coded glove. Already in the 90s Dorner and Hagen [39]
used a glove with colored rings to recognize short sequences of
American sign language. These rings correspond to individual
finger joints. Data-driven approaches extend this idea by using
a fabric glove with color patterns resulting in a non-restrictive
and inexpensive hand tracking, but with lack of accuracy [40].

C. Requirements of Sign Language

For sign language, only the upper body plays an important
role in communication, which can be observed in most publi-
cations [41]. However, the context and position of a sign within
a sentence become very crucial, as the same sign can translate
to different meanings [42]. Wu and Huang [43] categorize
hand gestures into different types, which include conversa-
tional, controlling, manipulative, and communicative gestures.
This classification provides a comprehensive understanding of
the various functions and applications of hand gestures in sign
language. The structured nature of sign language makes it
an interesting domain for testing computer vision algorithms
[44]. Its well-defined grammar and syntax provide an excellent
opportunity to develop and refine computer-based systems for
accurate recognition and translation of sign language, which
benefits both the deaf community and the field of human-
computer interaction [1], [45], [46].

III. HARDWARE SETUP

To combine the advantages of optical motion capture and
gloves, we started by investigating different camera configu-
rations for our Optitrack system with 11 Flex13 cameras (1.3
MP resolution, ±0.2 mm accuracy, and 120 FPS). Standard
camera layouts in a box shape are optimized for a large capture
area so that the actors can walk around and perform actions. In
the context of sign language, the performer stays in one place.
Therefore, we could ensure optimal performance by designing
a special camera layout that optimizes marker visibility while
minimizing occlusion.

By using a spherical camera rig, we can capture a person
from all angles, with more cameras focused on the forward
space of the person (see Fig. 2). This gives us a capture area
of about 3 m³. Though a spherical rig is not necessary for
recording, it increases the visibility of markers for our subse-
quent learning processes. Additionally, we use a Samsung S21
to record a video of the person in front of a neutral background
and an LED bar to make it easier to distinguish the subject
from the background in the videos. Additionally, the LED bar
provides consistent lighting, which helps to identify the color
features of our gloves in the following labeling steps.

A. Color Glove

Although color-coded gloves enable nonrestrictive and in-
expensive hand tracking previous approaches lack in terms
of accuracy [39], [40]. To tackle this we combine a custom
color glove with the advantages of optical motion capture.
Our glove consists of a white fabric and 10 elastic colored
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Fig. 2: The spherical arrangement of the cameras for our
capturing process to get the best visibility of the markers with
a neutral background and an LED Bar.

bands in 5 colors (red, green, blue, yellow, and pink) for each
finger (see Fig. 3). In addition to colored bands, our glove has
small attached reflective markers on the upper side of each
band resulting in a total of 10 reflective markers per hand. To
ensure that markers can be easily identified, the band colors
are chosen to be distinguishable and easily isolated by image
processing afterward.

B. Synchronization

In dealing with multimodal data, it is crucial to maintain
coherence and synchronization among the data. Therefore,
a microcontroller was designed to trigger optical pulses via
LEDs in both the visible and infrared light ranges when an
external command-based procedure is fired by the recording
manager. These pulses serve as synchronization in and out
points of the videos and animation data marking the beginning
and end of a recording take. Consequently, the motion capture
system recognizes the infrared LED pulse as a marker, while
the white visible LED is detected in the video. To get the best
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Fig. 3: Our glove for labeling finger data consists of 10 elastic
colored bands in 5 colors (red, green, blue, yellow, and pink)
with a small reflective marker on the top of each band. Left:
Static hand pose with label naming convention. Right: Color
gloves worn together with the motion capture suit and rigid
bodies to track the palm of the hand.

results, the videos and the animation data are recorded at 120
fps.

IV. DEEP NEURAL LABELING

The core of our approach is the labeling process, which
allows us to use the motion capture data to maintain high
positional accuracy and overcome the limitations of dense
marker layouts using our custom color glove. This allows
us to automatically classify and label finger markers when
occlusions and marker swaps occur. Our method, called Deep
Neural Labeling (DNL), consists of two essential steps (see
Fig. 1): First, the motion capture data needs to be transformed
to reproject the marker information in the image plane of
the appropriate video frame. Together with the colored bands
of our glove, preliminary labels are assigned with a simple
search for the nearest neighbor. However, this information
is incomplete and contains occasionally errors, as the video
for assigning is fixed in space, and self-occlusions of the
performer’s body and hands can occur. Therefore, a subse-
quent machine learning algorithm is necessary that takes the
preliminary marker information to refine each marker with a
unique label. This results in an accurate labeling of the finger
markers.

A. Data Preprocessing & Reprojection

In the first step, the unlabeled optical motion capture
markers of the fingers are provided with a unique ID by
the motion capture system as long as they are continuously
tracked. However, in cases where markers vanish due to occlu-
sion or experience occasional positional jumps, they reemerge
with new IDs. Relying on this information is therefore not
applicable and needs a custom solution. We use a model-
based tracking approach to reconstruct missing markers by
extrapolating the movement. This only works for a certain
number of frames, as finger movement can be quite fast. If
the maximum frames for extrapolation are exceeded, the hand
marker set stays reduced, waiting for those missing markers
to reappear, triggering our labeling method. We also trigger
our labeling method at the start of every take.

For preliminary labeling, synchronized video is used to
detect and identify relevant color glove regions. To optimize
color detection, the method of Contrast Limited Adaptive
Histogram Equalization (CLAHE) [47] was applied to the
color values, resulting in an improved and normalized coherent
image. To find the relevant colors of the glove, the image
is processed further with color isolation and Canny edge
detection [48] to find the contours of each segment of the
finger.

The calibration of the virtual camera involves obtaining both
intrinsic and extrinsic camera parameters to initially label the
finger markers. This calibration process utilizes a combination
of Zhang’s method for intrinsic calibration [49] and 3D-2D
point correspondences for extrinsic calibration [50] to get
the transformation matrix Tcam using the RANSAC scheme
[51]. Specifically, the method involves reprojection of the
position pworld ∈ R3 of motion capture markers into image
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No. Set Count Accumulated Frames
1 Signs 343 35568

2 Sentences 89 76816

Total 432 112384

TABLE I: Overview of the used dataset. The accumulated
frames are treated separately as individual frames in the
training process.

space pscreen ∈ R2. Finally, each finger marker’s position
is assigned with the closest detected color contour through a
nearest-neighbor search.

B. Labeling Neural Network

The preliminary labels can still contain faulty assignments
and additional errors in joints and hands. Hence, a subsequent
final refinement step is necessary. To this end, we use a data-
driven machine-learning approach.

1) Dataset: The dataset for our DNL model consists of
normalized and labeled 3D marker data. Therefore, each point
is assigned to a specific part of the hand and finger. To obtain
a certain amount of samples, a combination of real recorded
and artificial data is used. The real data consists of the marker
data in hand space derived from the motion capture body data
and of the color data from the reprojection step. To enlarge
our dataset, artificial data was created by using fully animated
skeletons with finger poses from German Sign language and
extracting the virtually attached finger markers and colors.
At this point, there were about 432 records of movements,
of which about 80 contained more than 1000 usable frames.
These individual 110k frames from the motion data were used
in a supervised learning algorithm to finally assign the finger
markers (see Table I).

a) Normalized Hand Space: To create a more consistent
dataset, the 3D marker positions of the fingers were trans-
formed to be in the space of the respective hand so that they
no longer contained body motion information. This has the
advantage that the space is significantly reduced and becomes
more predictable. Additionally, the data is scaled to a smaller
space. To combine both hands in one designated space, each

Fig. 4: An overview of a selection of the marker positions of
each finger in a scaled and normalized hand space in different
views.

hand is shifted on one axis to combine both hands in one
normalized space (see Fig. 4). It can be identified that the
marker positions of each finger follow certain patterns and
can be categorized due to distinct spatial separation.

2) Machine Learning Architecture: A fully-connected layer
architecture with batch normalization was chosen to perform
regression classification (see Fig. 5). This allows multiple
classifications to be performed simultaneously for multiple
input values. The problem can therefore be broken down into a
sorting algorithm, as described by Ghorbani et al. [38]. Instead
of a direct classification, they use an approach to determine
the components of a permutation matrix.

In the initial stage, the color values are converted to
integer values from -2 to 2, where each value represents a
specific color (for example, red = -2, etc.). Combined with
the normalized positional information, they are flattened to an
input vector of 80 nodes. The positional components and color
values are tightly coupled to form a 4D vector (T ) for each of
the 20 preliminary labeled markers. Each input node is then
fed through five fully-connected layers with decreasing sizes
starting with 2048 cells with a subsequent batch normalization
step and ending at the 20-cell output layer. Each layer has
a rectified linear unit (ReLU) activation function besides the
output layer which has a linear activation function. Each of
the 20 output cells represents a value between -1 and 1. To
interpret the information of the model, a discretization step
is necessary that rounds the values to distinct values that
represent a unique label that describes each marker by the three
categories of hand, finger, and joint. For example, a value of
0.3 represents the first joint on the left index.

To improve the accuracy of the DNL and to gain some
robustness, several data augmentation methods were applied
based on the observed data sets. These included adding noise
to marker positions (±0.1cm), adding a 10% of misinforma-
tion to the data to make it more capable of detecting and
correcting such errors, and a 10% chance of completely re-
moving data to become accustomed to dealing with incomplete
or missing information. Additionally, the order of the frames
and markers were changed to train the model with different
temporal sequences and arrangements.

3) Performance Analysis: The machine learning algorithm
achieved an accuracy of 97% after being trained for 500
epochs, with a batch size of 32, using the ADAM optimizer,
and the MSQ loss function. The prediction runs on the GPU
(Nvidia 4070Ti) and needs 35 ms for both hands combined.
The preprocessing with color detection with the glove is CPU-
based and takes an average of 20 ms resulting in a total of
55 ms for the DNL method.

To validate accuracy, the data set was split, with 30% of
the data reserved solely for this validation task. To eliminate
any temporal dependencies in the evaluation and validation,
we ran the system with shuffled frames. This approach al-
lows the algorithm to act independently in time and trains
without considering sequence-related information in the data.
A comparison with a smaller architecture or removing the
color information reveals that the DNL model has the highest
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Fig. 5: The Deep Neural Labeling Algorithm flattens 20 4D
vectors T containing positional and color information into
80 inputs values. Each input node is fed through five fully-
connected layers with decreasing sizes. The model generates
continuous values between -1 and 1, needing a subsequent
discretization step for complete assignment.

validation accuracy (see Fig. 6). There is a clear difference
between the curves with (Glove) and without (No Glove) color
information. The model without color glove information shows
a 10% worse performance compared to the model with color
information. This leads to the assumption that using the color
information from our gloves in the preliminary labeling step
results in a significant increase in accuracy, even though these
labels are sometimes false.

In addition to the function of the color information, an
investigation of the hyperparameters was also carried out. Ad-
justments were made to use smaller dimensioned layers in the

0 25 50 75 100 125 150 175 200
epochs
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0.6
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1.0
Validation Accuracy
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Fig. 6: Overview of the performances of the dataset and
machine learning architecture while learning. The validation
accuracy increases by adding color information and using a
larger architecture.

architecture. The results obtained indicate a notable reduction
in the accurate identification of markers, as illustrated in the
graph (see Figs. 6 - Small Net). This underlines the sensitivity
of the hyperparameters and shows that the right choice is
essential for the performance of the model.

C. Limitations

Our labeling algorithm does not use temporal information
from previous frames. The algorithm considers each frame as
a separate individual frame and handles them independently.
Information about the temporal context or previous frames
is not incorporated. This approach can have both advantages
and disadvantages. On the positive side, it allows efficient
processing and labeling of the data without having to perform
additional calculations for temporal context. However, in some
scenarios, it may be necessary to take into account the tempo-
ral progression of the underlying data to achieve better results.
This depends on the specific task and the context of the data
on which it is based.

V. POSE ESTIMATION

Given our labeled marker information, it is now possible
to animate the skeleton model of the hands. Therefore, a
mathematical hand model is created that precisely specifies the
marker locations for each finger while using only two markers,
since the two interphalangeal joints often move together, as
described by Alexanderson et al. [9]. The kinematic rotation
space of each finger is reduced to 5 degrees of freedom
(DoF), due to natural axis restrictions of the human hand. An
overview of the joints and limitations is listed in Table II and
Fig. 7.
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No. Finger Joints DOF Limits
1 Thumb 3 5 Joint 1: x ∈ [±80◦],y ∈ [−150◦, 30◦],z ∈ [±90◦], Joint 2-3: y ∈ [0◦, 90◦]

2 Index, Middle, Ring, Pinky 4 5 Joint 1: x ∈ [±8◦], Joint 2: x ∈ [0◦, 110◦], y ∈ [−10◦, 25◦], Joint 3-4: x ∈ [0◦, 130◦]

TABLE II: Overview of the finger configuration for each hand. The recorded limits are in degree and tightly coupled with our
underlying skeleton structure for hand pose reconstruction. All joints are oriented forward on the z-axis.

A. Solving Algorithm

To determine the overall pose of the hand, five separate opti-
mization problems need to be solved. We compute the forward
kinematics of each finger i ∈ {1, ...5} for the two markers
mi,j for j ∈ {1, 2} using the current joint angle configuration
qi ∈ R5. Therefore, fi,j(qi) transforms the local marker mi,j

by using the current configuration qi with the corresponding
joint chain transformation matrix Ti,j(qi)

[Local→World].
We solve the minimization problem by calculating the dis-

tance as an error of the expected markers from fi,j(qi) and the
real corresponding point pi,j with the following optimization:

q∗i = argmin
qi

2∑
j=1

∥pi,j − fi,j(qi)∥2 · wj (1)

with:

with fi,j(qi) = Ti,j(qi)
[Local→World] ·mi,j (2)

and the limitations from Table II:

qmin
i ≤ qi ≤ qmax

i ∈ R5 (3)

The optimization error is multiplied by different weights
wj to ensure larger errors for the critical markers close to
the fingertips and to maintain higher accuracy in position-
ing. Thereby, a 30% penalty produces the best results. We
solve these optimization problems using the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) method with
simple box constraints and numerically estimated gradients
[52], [53], starting with the configuration of the joint angles
of the previous frame.

Marker

1 DOF

2 DOF

3 DOF

JOINT 1

JOINT 2

JOINT 3

JOINT 4

Fig. 7: Our underlying skeleton structure with DOF for our
hand pose estimation.

B. Pose Evaluation

Combining the degrees of freedom of the thumb and finger
joints results in a total number of 25 DoF. This number allows
the model to cover all possible hand poses, and thus provide a
comprehensive capture of hand movements. Consequently, this
model allows for an optimal balance between flexibility and
complexity in optimization performance. Figure 9 provides an
overview of some possible hand poses based on actual German
sign language poses captured with our system.

1) Pose Validation: An additional simple collision detec-
tion of capsules was implemented to validate the estimated
pose. Therefore, capsules are attached to the finger joints. If
an overlap is detected between these capsules, the pose is
considered invalid and the previous pose is used. However, this
collision test can be expensive. Hence, a more simple cross-
check is performed before that compares the angles between
the normalized finger joint vectors to determine if there is an
unrealistic crossover. The scalar product is used to check the
normalized vectors.

2) Pose Performance: The computational effort needed
varies significantly due to the inconsistent number of iterations
required to estimate the correct hand pose (see Fig. 8). Using
a current system (Intel i9-13900k with 24 cores, 32 GB
RAM, Nvidia GTX 4070Ti), on average the optimization
method needs 125 ms for the dominant hand in motion. The
computational effort increases when both hands are active and
the sign language actor changes the hand poses. In this case,
the fingers undergo a large movement from one frame to the
next. These large finger movements lead to large positional
changes of the markers, resulting in an increased time to solve
the optimization problem.

Fig. 8: Optimization times for the dominant hand in one
example take. The graph shows a large variation in the
calculation time but averages out at 125 ms.
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Fig. 9: Overview of the variety of possible hand poses of our system based on the German sign language. The finger postures
of the right dominant hand are shown as an example.

VI. DISCUSSION

The system is specifically trained on sign language gestures
and enables highly accurate capturing of hand poses. This
design focus on accuracy makes the system particularly attrac-
tive for use in avatar-based immersive environments, where
highly accurate representation is critical to ensure natural
interpersonal communication. This is especially meaningful
for deaf people communicating in VR or AR environments, as
it allows them to express and communicate via sign language.
This contributes substantially to the linguistic inclusion of deaf
people and has both social and ethical implications. Thus,
deaf users can express and communicate naturally in virtual
worlds. Moreover, its accuracy provides the opportunity to
develop hybrid systems in which signs could be translated in
real-time [54]. This extends the scope of applications beyond
sign language and opens up new accessibility possibilities for
immersive communication in VR and AR applications.

Another interesting application area is outside of sign lan-
guage, as the system can be used in other scenarios due to its
precision and hand pose recognition capability. For example,
using a colored glove for hand pose recognition in virtual
reality can greatly improve interaction in VR environments.
This allows users to move and gesture more naturally, which
significantly increases immersion and the overall experience.
At the same time, low latency is of great importance and must
be taken into account to ensure a realistic experience.

The current system has some limitations that require further
refinement. Most notably, real-time capability has not yet been
achieved, but there is an opportunity to address this with
further improvements. Two ways are promising to improve
the performance of the system. First, optimizing the neural
network with temporal information and including non-signing
gestures in the dataset could significantly increase overall
performance. This could lead to a reduction in the size of
the neural network, improving the efficiency and accuracy of
hand pose recognition in VR environments. In addition, we
see great potential in simplifying the kinematic model for our
solving algorithm to a less dimensional problem. Although our
system was only evaluated on our spherical rig, it is important

to note that this configuration helps to improve visibility but
is not required. Further investigation of the camera layout is
needed to evaluate different setups.

It is important to highlight that the visualization of the hand
did not play a leading role in our scenario. Nevertheless, we
are aware that it can make a significant contribution to realism.
Especially in VR, the aspect of self-embodiment is a decisive
factor for presence and must be taken into account. We are
aware of the challenges of such representations, such as the
deformation of the skin and the formation of wrinkles, but
they are not included in this work.

(a) Mediapipes + fitted mesh (b) Ours + fitted mesh

(c) Mediapipe + Ours overlay

Fig. 10: Comparison of our hand pose compared to state-
of-the-art image based method from Mediapipe [55]. In the
overlay 10c the estimated poses are compared from different
angles (pink presents the hand of Mediapipe and green ours),
which visualize distinct deviations.
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A. Comparison to image-only methods

For image-only methods, there are two main problems that
our method eliminates: First, the depth information calculated
is only an estimate and cannot produce a precise depth
representation. On the other hand, the estimated skeleton is
based on detected 2D feature points and estimated depth,
resulting in inconsistent bone length in motion. Hence, it is
necessary to handle a consistent skeleton for animation in an
additional step.

A direct comparison between a complex hand pose using
Zhang et al.’s method [55] and our developed method reveals
a mean square error of 3.2% normalized by diagonal palm
size to a synthetic reference pose compared to Zhang et al.’s
method with 16.2%. By overlaying these two poses, noticeable
differences become visible. A direct joint comparison of only
the skeleton reveals the differences by using synthetically
generated poses (see Fig. 10).

VII. CONCLUSION & FUTURE WORK

In this paper, we presented a novel hybrid approach for
estimating hand poses for applications such as avatar-based
communication in immersive environments. The method com-
bines a passive marker-based motion capture system, a glove,
and a data-driven approach. To this end, we used a specially
designed colored glove with optical markers that classify
unlabeled finger markers with computer vision and by a
subsequent machine learning algorithm. In the second step,
these labeled markers drive a custom hand skeleton model,
considering factors like finger limitations and collision detec-
tion. This approach offers an effective solution for animating
hands, overcoming manual labeling challenges, and providing
accurate hand pose estimation.

For future projects, we want to continuously improve the
machine learning algorithm to potentially eliminate the re-
quirement of the glove in the end. A potential idea is to use
a 3D convolutional layer and recurrent nodes to increase the
accuracy and efficiency of the hand pose estimation and reduce
the amount of physical aids needed. Our database of reference
data provides a good foundation to develop and evaluate new
models. This comprehensive database allows us to cover a
wide range of scenarios and to apply the performance of
the algorithms to a wide variety of application fields for
sign language. Despite the challenge in terms of real-time
capability, there is potential to adapt the method so that hand
pose settings can be determined directly. This would allow the
optimization problem to be bypassed, which could ultimately
lead to an increase in overall performance.

Regarding real-time communication, we see great potential,
especially in the area of avatar-based communication in the
context of sign language, to further enhance accessibility. Our
developed method helps to support more inclusiveness for
deaf people and to make avatar-based communication in sign
language more efficient and accurate as shown in previous
publications [1], [56].
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