Dot product / scalar product: | 0 | $= \textbf{a} \cdot \textbf{b} =
|\textbf{a}| |\textbf{b}| \cos\measuredangle(\textbf{a},\textbf{b}) =
\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot
\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} =
a_1 b_1+a_2 b_2+a_3 b_3 $ |
Angle: | 0 | $= \measuredangle(\textbf{a},\textbf{b}) =
\arccos\left( \frac{ \textbf{a}\cdot\textbf{b} }
{\left|\textbf{a}\right| \left|\textbf{b}\right| }\right)$ |
Length of the projection: |
0 | $= \left|\textbf{a}_\textbf{b}\right| =
\left|\frac{\textbf{a}\cdot\textbf{b} }
{\left|\textbf{b}\right|^2} \textbf{b}\right| $ |